@article{BaranOstensenTeltingetal.2018, author = {Baran, Andrzej S. and Ostensen, R. H. and Telting, J. H. and Vos, Joris and Kilkenny, D. and Vuckovic, Maja and Reed, M. D. and Silvotti, R. and Jeffery, C. Simon and Parsons, Steven G. and Dhillon, V. S. and Marsh, T. R.}, title = {Pulsations and eclipse-time analysis of HW Vir}, series = {Monthly notices of the Royal Astronomical Society}, volume = {481}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty2473}, pages = {2721 -- 2735}, year = {2018}, abstract = {We analysed recent K2 data of the short-period eclipsing binary system HW Vir, which consists of a hot subdwarf-B type primary with an M-dwarf companion. We determined the mid-times of eclipses, calculated O-C diagrams, and an average shift of the secondary minimum. Our results show that the orbital period is stable within the errors over the course of the 70 days of observations. Interestingly, the offset from mid-orbital phase between the primary and the secondary eclipses is found to be 1.62 s. If the shift is explained solely by light-travel time, the mass of the sdB primary must be 0.26 M-circle dot, which is too low for the star to be core-helium burning. However, we argue that this result is unlikely to be correct and that a number of effects caused by the relative sizes of the stars conspire to reduce the effective light-travel time measurement. After removing the flux variation caused by the orbit, we calculated the amplitude spectrum to search for pulsations. The spectrum clearly shows periodic signal from close to the orbital frequency up to 4600 mu Hz, with the majority of peaks found below 2600 mu Hz. The amplitudes are below 0.1 part-per-thousand, too low to be detected with ground-based photometry. Thus, the high-precision data from the Kepler spacecraft has revealed that the primary of the HW Vir system is a pulsating sdBV star. We argue that the pulsation spectrum of the primary in HW Vir differs from that in other sdB stars due to its relatively fast rotation that is (nearly) phase-locked with the orbit.}, language = {en} } @article{VosVuckovicChenetal.2018, author = {Vos, Joris and Vuckovic, Maja and Chen, Xuefei and Han, Zhanwen and Boudreaux, Thomas and Barlow, Brad N. and Ostensen, Roy and N{\´e}meth, P{\´e}ter}, title = {The orbital period-mass ratio relation of wide sdB plus MS binaries and its application to the stability of RLOF}, series = {Monthly notices of the Royal Astronomical Society}, volume = {482}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty3017}, pages = {4592 -- 4605}, year = {2018}, abstract = {Wide binaries with hot subdwarf-B (sdB) primaries and main sequence companions are thought to form only through stable Roche-lobe overflow (RLOF) of the sdB progenitor near the tip of the red giant branch (RGB). We present the orbital parameters of 11 new long-period composite sdB binaries based on spectroscopic observations obtained with the UVES, FEROS, and CHIRON spectrographs. Using all wide sdB binaries with known orbital parameters, 23 systems, the observed period distribution is found to match very well with theoretical predictions. A second result is the strong correlation between the orbital period (P) and the mass ratio (q) in the observed wide sdB binaries. In the P-q plane two distinct groups emerge, with the main group (18 systems) showing a strong correlation of lower mass ratios at longer orbital periods. The second group comprises systems that are thought to be formed from higher mass progenitors. Based on theoretical models, a correlation between the initial mass ratio at the start of RLOF and core mass of the sdB progenitor is found, which defines a mass-ratio range at which RLOF is stable on the RGB.}, language = {en} }