@article{StelzelSchauenburgRappetal.2017, author = {Stelzel, Christine and Schauenburg, Gesche and Rapp, Michael A. and Heinzel, Stephan and Granacher, Urs}, title = {Age-Related Interference between the Selection of Input-Output Modality Mappings and Postural Control-a Pilot Study}, series = {Frontiers in psychology}, volume = {8}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2017.00613}, pages = {15}, year = {2017}, abstract = {Age-related decline in executive functions and postural control due to degenerative processes in the central nervous system have been related to increased fall-risk in old age. Many studies have shown cognitive-postural dual-task interference in old adults, but research on the role of specific executive functions in this context has just begun. In this study, we addressed the question whether postural control is impaired depending on the coordination of concurrent response-selection processes related to the compatibility of input and output modality mappings as compared to impairments related to working-memory load in the comparison of cognitive dual and single tasks. Specifically, we measured total center of pressure (CoP) displacements in healthy female participants aged 19-30 and 66-84 years while they performed different versions of a spatial one-back working memory task during semi-tandem stance on an unstable surface (i.e., balance pad) while standing on a force plate. The specific working-memory tasks comprised: (i) modality compatible single tasks (i.e., visual-manual or auditory-vocal tasks), (ii) modality compatible dual tasks (i.e., visual-manual and auditory-vocal tasks), (iii) modality incompatible single tasks (i.e., visual-vocal or auditory-manual tasks), and (iv) modality incompatible dual tasks (i.e., visual-vocal and auditory-manual tasks). In addition, participants performed the same tasks while sitting. As expected from previous research, old adults showed generally impaired performance under high working-memory load (i.e., dual vs. single one-back task). In addition, modality compatibility affected one-back performance in dual-task but not in single-task conditions with strikingly pronounced impairments in old adults. Notably, the modality incompatible dual task also resulted in a selective increase in total CoP displacements compared to the modality compatible dual task in the old but not in the young participants. These results suggest that in addition to effects of working-memory load, processes related to simultaneously overcoming special linkages between input-and output modalities interfere with postural control in old but not in young female adults. Our preliminary data provide further evidence for the involvement of cognitive control processes in postural tasks.}, language = {en} } @article{HortobagyiUematsuSandersetal.2018, author = {Hortobagyi, Tibor and Uematsu, Azusa and Sanders, Lianne and Kliegl, Reinhold and Tollar, Jozsef and Moraes, Renato and Granacher, Urs}, title = {Beam Walking to Assess Dynamic Balance in Health and Disease}, series = {Gerontology}, volume = {65}, journal = {Gerontology}, number = {4}, publisher = {Karger}, address = {Basel}, issn = {0304-324X}, doi = {10.1159/000493360}, pages = {332 -- 339}, year = {2018}, abstract = {Background: Dynamic balance keeps the vertical projection of the center of mass within the base of support while walking. Dynamic balance tests are used to predict the risks of falls and eventual falls. The psychometric properties of most dynamic balance tests are unsatisfactory and do not comprise an actual loss of balance while walking. Objectives: Using beam walking distance as a measure of dynamic balance, the BEAM consortium will determine the psychometric properties, lifespan and patient reference values, the relationship with selected "dynamic balance tests," and the accuracy of beam walking distance to predict falls. Methods: This cross-sectional observational study will examine healthy adults in 7 decades (n = 432) at 4 centers. Center 5 will examine patients (n = 100) diagnosed with Parkinson's disease, multiple sclerosis, stroke, and balance disorders. In test 1, all participants will be measured for demographics, medical history, muscle strength, gait, static balance, dynamic balance using beam walking under single (beam walking only) and dual task conditions (beam walking while concurrently performing an arithmetic task), and several cognitive functions. Patients and healthy participants age 50 years or older will be additionally measured for fear of falling, history of falls, miniBESTest, functional reach on a force platform, timed up and go, and reactive balance. All participants age 50 years or older will be recalled to report fear of falling and fall history 6 and 12 months after test 1. In test 2, seven to ten days after test 1, healthy young adults and age 50 years or older (n = 40) will be retested for reliability of beam walking performance. Conclusion: We expect to find that beam walking performance vis-{\`a}-vis the traditionally used balance outcomes predicts more accurately fall risks and falls. Clinical Trial Registration Number: NCT03532984.}, language = {en} } @article{BenOthmanChaouachiChaouachietal.2019, author = {Ben Othman, Aymen and Chaouachi, Anis and Chaouachi, Mehdi and Makhlouf, Issam and Farthing, Jonathan P. and Granacher, Urs and Behm, David George}, title = {Dominant and nondominant leg press training induce similar contralateral and ipsilateral limb training adaptations with children}, series = {Applied Physiology, Nutrition, and Metabolism}, volume = {44}, journal = {Applied Physiology, Nutrition, and Metabolism}, number = {9}, publisher = {NRC Research Press}, address = {Ottawa}, issn = {1715-5312}, doi = {10.1139/apnm-2018-0766}, pages = {973 -- 984}, year = {2019}, abstract = {Cross-education has been extensively investigated with adults. Adult studies report asymmetrical cross-education adaptations predominately after dominant limb training. The objective of the study was to examine unilateral leg press (LP) training of the dominant or nondominant leg on contralateral and ipsilateral strength and balance measures. Forty-two youth (10-13 years) were placed (random allocation) into a dominant (n = 15) or nondominant (n = 14) leg press training group or nontraining control (n = 13). Experimental groups trained 3 times per week for 8 weeks and were tested pre-/post-training for ipsilateral and contralateral 1-repetition maximum (RM) horizontal LP, maximum voluntary isometric contraction (MVIC) of knee extensors (KE) and flexors (KF), countermovement jump (CMJ), triple hop test (THT), MVIC strength of elbow flexors (EF) and handgrip, as well as the stork and Y balance tests. Both dominant and nondominant LP training significantly (p < 0.05) increased both ipsilateral and contralateral lower body strength (LP 1RM (dominant: 59.6\%-81.8\%; nondominant: 59.5\%-96.3\%), KE MVIC (dominant: 12.4\%-18.3\%; nondominant: 8.6\%-18.6\%), KF MVIC (dominant: 7.9\%-22.3\%; nondominant: nonsignificant-3.8\%), and power (CMJ: dominant: 11.1\%-18.1\%; nondominant: 7.7\%-16.6\%)). The exception was that nondominant LP training demonstrated a nonsignificant change with the contralateral KF MVIC. Other significant improvements were with nondominant LP training on ipsilateral EF 1RM (6.2\%) and THT (9.6\%). There were no significant changes with EF and handgrip MVIC. The contralateral leg stork balance test was impaired following dominant LP training. KF MVIC exhibited the only significant relative post-training to pretraining (post-test/pre-test) ratio differences between dominant versus nondominant LP cross-education training effects. In conclusion, children exhibit symmetrical cross-education or global training adaptations with unilateral training of dominant or nondominant upper leg.}, language = {en} } @misc{RamachandranSinghRamirezCampilloetal.2021, author = {Ramachandran, Akhilesh Kumar and Singh, Utkarsh and Ramirez-Campillo, Rodrigo and Clemente, Filipe Manuel and Afonso, Jos{\´e} and Granacher, Urs}, title = {Effects of Plyometric Jump Training on Balance Performance in Healthy Participants: A Systematic Review With Meta-Analysis / Effects of plyometric-jump training on balance performance in healthy individuals across the lifespan: A systematic review with meta-analysisist}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, issn = {1866-8364}, doi = {10.25932/publishup-52403}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-524034}, pages = {24}, year = {2021}, abstract = {Postural balance represents a fundamental movement skill for the successful performance of everyday and sport-related activities. There is ample evidence on the effectiveness of balance training on balance performance in athletic and non-athletic population. However, less is known on potential transfer effects of other training types, such as plyometric jump training (PJT) on measures of balance. Given that PJT is a highly dynamic exercise mode with various forms of jump-landing tasks, high levels of postural control are needed to successfully perform PJT exercises. Accordingly, PJT has the potential to not only improve measures of muscle strength and power but also balance. To systematically review and synthetize evidence from randomized and non-randomized controlled trials regarding the effects of PJT on measures of balance in apparently healthy participants. Systematic literature searches were performed in the electronic databases PubMed, Web of Science, and SCOPUS. A PICOS approach was applied to define inclusion criteria, (i) apparently healthy participants, with no restrictions on their fitness level, sex, or age, (ii) a PJT program, (iii) active controls (any sport-related activity) or specific active controls (a specific exercise type such as balance training), (iv) assessment of dynamic, static balance pre- and post-PJT, (v) randomized controlled trials and controlled trials. The methodological quality of studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. This meta-analysis was computed using the inverse variance random-effects model. The significance level was set at p <0.05. The initial search retrieved 8,251 plus 23 records identified through other sources. Forty-two articles met our inclusion criteria for qualitative and 38 for quantitative analysis (1,806 participants [990 males, 816 females], age range 9-63 years). PJT interventions lasted between 4 and 36 weeks. The median PEDro score was 6 and no study had low methodological quality (≤3). The analysis revealed significant small effects of PJT on overall (dynamic and static) balance (ES = 0.46; 95\% CI = 0.32-0.61; p < 0.001), dynamic (e.g., Y-balance test) balance (ES = 0.50; 95\% CI = 0.30-0.71; p < 0.001), and static (e.g., flamingo balance test) balance (ES = 0.49; 95\% CI = 0.31-0.67; p < 0.001). The moderator analyses revealed that sex and/or age did not moderate balance performance outcomes. When PJT was compared to specific active controls (i.e., participants undergoing balance training, whole body vibration training, resistance training), both PJT and alternative training methods showed similar effects on overall (dynamic and static) balance (p = 0.534). Specifically, when PJT was compared to balance training, both training types showed similar effects on overall (dynamic and static) balance (p = 0.514). Conclusion: Compared to active controls, PJT showed small effects on overall balance, dynamic and static balance. Additionally, PJT produced similar balance improvements compared to other training types (i.e., balance training). Although PJT is widely used in athletic and recreational sport settings to improve athletes' physical fitness (e.g., jumping; sprinting), our systematic review with meta-analysis is novel in as much as it indicates that PJT also improves balance performance. The observed PJT-related balance enhancements were irrespective of sex and participants' age. Therefore, PJT appears to be an adequate training regime to improve balance in both, athletic and recreational settings.}, language = {en} } @misc{SariatiZouhalHammamietal.2021, author = {Sariati, Dorsaf and Zouhal, Hassane and Hammami, Raouf and Clark, Cain Craig Truman and Nebigh, Ammar and Chtara, Moktar and Hackney, Anthony C. and Souissi, Nizar and Granacher, Urs and Ben Ounis, Omar}, title = {Association Between Mental Imagery and Change of Direction Performance in Young Elite Soccer Players of Different Maturity Status}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-54465}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-544655}, pages = {1 -- 9}, year = {2021}, abstract = {Previous studies have not considered the potential influence of maturity status on the relationship between mental imagery and change of direction (CoD) speed in youth soccer. Accordingly, this cross-sectional study examined the association between mental imagery and CoD performance in young elite soccer players of different maturity status. Forty young male soccer players, aged 10-17 years, were assigned into two groups according to their predicted age at peak height velocity (PHV) (Pre-PHV; n = 20 and Post-PHV; n = 20). Participants were evaluated on soccer-specific tests of CoD with (CoDBall-15m) and without (CoD-15m) the ball. Participants completed the movement imagery questionnaire (MIQ) with the three- dimensional structure, internal visual imagery (IVI), external visual imagery (EVI), as well as kinesthetic imagery (KI). The Post-PHV players achieved significantly better results than Pre-PHV in EVI (ES = 1.58, large; p < 0.001), CoD-15m (ES = 2.09, very large; p < 0.001) and CoDBall-15m (ES = 1.60, large; p < 0.001). Correlations were significantly different between maturity groups, where, for the pre-PHV group, a negative very large correlation was observed between CoDBall-15m and KI (r = -0.73, p = 0.001). For the post-PHV group, large negative correlations were observed between CoD-15m and IVI (r = -0.55, p = 0.011), EVI (r = -062, p = 0.003), and KI (r = -0.52, p = 0.020). A large negative correlation of CoDBall-15m with EVI (r = -0.55, p = 0.012) and very large correlation with KI (r = -0.79, p = 0.001) were also observed. This study provides evidence of the theoretical and practical use for the CoD tasks stimulus with imagery. We recommend that sport psychology specialists, coaches, and athletes integrated imagery for CoD tasks in pre-pubertal soccer players to further improve CoD related performance.}, language = {en} } @article{RamachandranSinghRamirezCampilloetal.2021, author = {Ramachandran, Akhilesh Kumar and Singh, Utkarsh and Ramirez-Campillo, Rodrigo and Clemente, Filipe Manuel and Afonso, Jos{\´e} and Granacher, Urs}, title = {Effects of Plyometric Jump Training on Balance Performance in Healthy Participants: A Systematic Review With Meta-Analysis / Effects of plyometric-jump training on balance performance in healthy individuals across the lifespan: A systematic review with meta-analysisist}, series = {Frontiers in Physiology}, volume = {12}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, pages = {22}, year = {2021}, abstract = {Postural balance represents a fundamental movement skill for the successful performance of everyday and sport-related activities. There is ample evidence on the effectiveness of balance training on balance performance in athletic and non-athletic population. However, less is known on potential transfer effects of other training types, such as plyometric jump training (PJT) on measures of balance. Given that PJT is a highly dynamic exercise mode with various forms of jump-landing tasks, high levels of postural control are needed to successfully perform PJT exercises. Accordingly, PJT has the potential to not only improve measures of muscle strength and power but also balance. To systematically review and synthetize evidence from randomized and non-randomized controlled trials regarding the effects of PJT on measures of balance in apparently healthy participants. Systematic literature searches were performed in the electronic databases PubMed, Web of Science, and SCOPUS. A PICOS approach was applied to define inclusion criteria, (i) apparently healthy participants, with no restrictions on their fitness level, sex, or age, (ii) a PJT program, (iii) active controls (any sport-related activity) or specific active controls (a specific exercise type such as balance training), (iv) assessment of dynamic, static balance pre- and post-PJT, (v) randomized controlled trials and controlled trials. The methodological quality of studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. This meta-analysis was computed using the inverse variance random-effects model. The significance level was set at p <0.05. The initial search retrieved 8,251 plus 23 records identified through other sources. Forty-two articles met our inclusion criteria for qualitative and 38 for quantitative analysis (1,806 participants [990 males, 816 females], age range 9-63 years). PJT interventions lasted between 4 and 36 weeks. The median PEDro score was 6 and no study had low methodological quality (≤3). The analysis revealed significant small effects of PJT on overall (dynamic and static) balance (ES = 0.46; 95\% CI = 0.32-0.61; p < 0.001), dynamic (e.g., Y-balance test) balance (ES = 0.50; 95\% CI = 0.30-0.71; p < 0.001), and static (e.g., flamingo balance test) balance (ES = 0.49; 95\% CI = 0.31-0.67; p < 0.001). The moderator analyses revealed that sex and/or age did not moderate balance performance outcomes. When PJT was compared to specific active controls (i.e., participants undergoing balance training, whole body vibration training, resistance training), both PJT and alternative training methods showed similar effects on overall (dynamic and static) balance (p = 0.534). Specifically, when PJT was compared to balance training, both training types showed similar effects on overall (dynamic and static) balance (p = 0.514). Conclusion: Compared to active controls, PJT showed small effects on overall balance, dynamic and static balance. Additionally, PJT produced similar balance improvements compared to other training types (i.e., balance training). Although PJT is widely used in athletic and recreational sport settings to improve athletes' physical fitness (e.g., jumping; sprinting), our systematic review with meta-analysis is novel in as much as it indicates that PJT also improves balance performance. The observed PJT-related balance enhancements were irrespective of sex and participants' age. Therefore, PJT appears to be an adequate training regime to improve balance in both, athletic and recreational settings.}, language = {en} } @article{SariatiZouhalHammamietal.2021, author = {Sariati, Dorsaf and Zouhal, Hassane and Hammami, Raouf and Clark, Cain Craig Truman and Nebigh, Ammar and Chtara, Moktar and Hackney, Anthony C. and Souissi, Nizar and Granacher, Urs and Ben Ounis, Omar}, title = {Association Between Mental Imagery and Change of Direction Performance in Young Elite Soccer Players of Different Maturity Status}, series = {Frontiers in Psychology}, volume = {12}, journal = {Frontiers in Psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne, Schweiz}, issn = {1664-1078}, doi = {10.3389/fpsyg.2021.665508}, pages = {1 -- 9}, year = {2021}, abstract = {Previous studies have not considered the potential influence of maturity status on the relationship between mental imagery and change of direction (CoD) speed in youth soccer. Accordingly, this cross-sectional study examined the association between mental imagery and CoD performance in young elite soccer players of different maturity status. Forty young male soccer players, aged 10-17 years, were assigned into two groups according to their predicted age at peak height velocity (PHV) (Pre-PHV; n = 20 and Post-PHV; n = 20). Participants were evaluated on soccer-specific tests of CoD with (CoDBall-15m) and without (CoD-15m) the ball. Participants completed the movement imagery questionnaire (MIQ) with the three- dimensional structure, internal visual imagery (IVI), external visual imagery (EVI), as well as kinesthetic imagery (KI). The Post-PHV players achieved significantly better results than Pre-PHV in EVI (ES = 1.58, large; p < 0.001), CoD-15m (ES = 2.09, very large; p < 0.001) and CoDBall-15m (ES = 1.60, large; p < 0.001). Correlations were significantly different between maturity groups, where, for the pre-PHV group, a negative very large correlation was observed between CoDBall-15m and KI (r = -0.73, p = 0.001). For the post-PHV group, large negative correlations were observed between CoD-15m and IVI (r = -0.55, p = 0.011), EVI (r = -062, p = 0.003), and KI (r = -0.52, p = 0.020). A large negative correlation of CoDBall-15m with EVI (r = -0.55, p = 0.012) and very large correlation with KI (r = -0.79, p = 0.001) were also observed. This study provides evidence of the theoretical and practical use for the CoD tasks stimulus with imagery. We recommend that sport psychology specialists, coaches, and athletes integrated imagery for CoD tasks in pre-pubertal soccer players to further improve CoD related performance.}, language = {en} } @misc{BrahmsHeinzelRappetal.2022, author = {Brahms, Markus and Heinzel, Stephan and Rapp, Michael A. and M{\"u}ckstein, Marie and Hortob{\´a}gyi, Tibor and Stelzel, Christine and Granacher, Urs}, title = {The acute effects of mental fatigue on balance performance in healthy young and older adults - A systematic review and meta-analysis}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-56156}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-561560}, pages = {1 -- 13}, year = {2022}, abstract = {Cognitive resources contribute to balance control. There is evidence that mental fatigue reduces cognitive resources and impairs balance performance, particularly in older adults and when balance tasks are complex, for example when trying to walk or stand while concurrently performing a secondary cognitive task. We conducted a systematic literature search in PubMed (MEDLINE), Web of Science and Google Scholar to identify eligible studies and performed a random effects meta-analysis to quantify the effects of experimentally induced mental fatigue on balance performance in healthy adults. Subgroup analyses were computed for age (healthy young vs. healthy older adults) and balance task complexity (balance tasks with high complexity vs. balance tasks with low complexity) to examine the moderating effects of these factors on fatigue-mediated balance performance. We identified 7 eligible studies with 9 study groups and 206 participants. Analysis revealed that performing a prolonged cognitive task had a small but significant effect (SMDwm = -0.38) on subsequent balance performance in healthy young and older adults. However, age- and task-related differences in balance responses to fatigue could not be confirmed statistically. Overall, aggregation of the available literature indicates that mental fatigue generally reduces balance in healthy adults. However, interactions between cognitive resource reduction, aging and balance task complexity remain elusive.}, language = {en} } @article{BrahmsHeinzelRappetal.2022, author = {Brahms, Markus and Heinzel, Stephan and Rapp, Michael A. and M{\"u}ckstein, Marie and Hortob{\´a}gyi, Tibor and Stelzel, Christine and Granacher, Urs}, title = {The acute effects of mental fatigue on balance performance in healthy young and older adults - A systematic review and meta-analysis}, series = {Acta Psychologica}, volume = {225}, journal = {Acta Psychologica}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-6297}, doi = {10.1016/j.actpsy.2022.103540}, pages = {1 -- 13}, year = {2022}, abstract = {Cognitive resources contribute to balance control. There is evidence that mental fatigue reduces cognitive resources and impairs balance performance, particularly in older adults and when balance tasks are complex, for example when trying to walk or stand while concurrently performing a secondary cognitive task. We conducted a systematic literature search in PubMed (MEDLINE), Web of Science and Google Scholar to identify eligible studies and performed a random effects meta-analysis to quantify the effects of experimentally induced mental fatigue on balance performance in healthy adults. Subgroup analyses were computed for age (healthy young vs. healthy older adults) and balance task complexity (balance tasks with high complexity vs. balance tasks with low complexity) to examine the moderating effects of these factors on fatigue-mediated balance performance. We identified 7 eligible studies with 9 study groups and 206 participants. Analysis revealed that performing a prolonged cognitive task had a small but significant effect (SMDwm = -0.38) on subsequent balance performance in healthy young and older adults. However, age- and task-related differences in balance responses to fatigue could not be confirmed statistically. Overall, aggregation of the available literature indicates that mental fatigue generally reduces balance in healthy adults. However, interactions between cognitive resource reduction, aging and balance task complexity remain elusive.}, language = {en} }