@article{FanvanWestenKorupetal.2012, author = {Fan, Xuanmei and van Westen, Cees J. and Korup, Oliver and Gorum, Tolga and Xu, Qiang and Dai, Fuchu and Huang, Runqiu and Wang, Gonghui}, title = {Transient water and sediment storage of the decaying landslide dams induced by the 2008 Wenchuan earthquake, China}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {171}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2012.05.003}, pages = {58 -- 68}, year = {2012}, abstract = {Earthquake-triggered landslide dams are potentially dangerous disrupters of water and sediment flux in mountain rivers, and capable of releasing catastrophic outburst flows to downstream areas. We analyze an inventory of 828 landslide dams in the Longmen Shan mountains, China, triggered by the M-w 7.9 2008 Wenchuan earthquake. This database is unique in that it is the largest of its kind attributable to a single regional-scale triggering event: 501 of the spatially clustered landslides fully blocked rivers, while the remainder only partially obstructed or diverted channels in steep watersheds of the hanging wall of the Yingxiu-Beichuan Fault Zone. The size distributions of the earthquake-triggered landslides, landslide dams, and associated lakes (a) can be modeled by an inverse gamma distribution; (b) show that moderate-size slope failures caused the majority of blockages; and (c) allow a detailed assessment of seismically induced river-blockage effects on regional water and sediment storage. Monte Carlo simulations based on volumetric scaling relationships for soil and bedrock failures respectively indicate that 14\% (18\%) of the estimated total coseismic landslide volume of 6.4 (14.6) x 10(9) m(3) was contained in landslide dams, representing only 1.4\% of the >60,000 slope failures attributed to the earthquake. These dams have created storage capacity of similar to 0.6x 10(9) m(3) for incoming water and sediment. About 25\% of the dams containing 2\% of the total river-blocking debris volume failed one week after the earthquake; these figures had risen to 60\% (similar to 20\%), and >90\% (>90\%) within one month, and one:year, respectively, thus also emptying similar to 92\% of the total potential water and sediment storage behind these, dams within one year following the earthquake. Currently only similar to 0.08 x 10(9) m(3) remain available as natural reservoirs for storing water and sediment, while similar to 0.19 x 10(9) m(3), i.e. about a third of the total river-blocking debris volume, has been eroded by rivers. Dam volume and upstream catchment area control to first order the longevity of the barriers, and bivariate domain plots are consistent with the observation that most earthquake-triggered landslide dams were ephemeral. We conclude that the river-blocking portion of coseismic slope failures disproportionately modulates the post-seismic sediment flux in the Longmen Shan on annual to decadal timescales.}, language = {en} } @article{Korup2012, author = {Korup, Oliver}, title = {Earth's portfolio of extreme sediment transport events}, series = {Earth science reviews : the international geological journal bridging the gap between research articles and textbooks}, volume = {112}, journal = {Earth science reviews : the international geological journal bridging the gap between research articles and textbooks}, number = {3-4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-8252}, doi = {10.1016/j.earscirev.2012.02.006}, pages = {115 -- 125}, year = {2012}, abstract = {Quantitative estimates of sediment flux and the global cycling of sediments from hillslopes to rivers, estuaries, deltas, continental shelves, and deep-sea basins have a long research tradition. In this context, extremely large and commensurately rare sediment transport events have so far eluded a systematic analysis. To start filling this knowledge gap I review some of the highest reported sediment yields in mountain rivers impacted by volcanic eruptions, earthquake- and storm-triggered landslide episodes, and catastrophic dam breaks. Extreme specific yields, defined here as those exceeding the 95th percentile of compiled data, are similar to 10(4) t km(-2) yr(-1) if averaged over 1 yr. These extreme yields vary by eight orders of magnitude, but systematically decay with reference intervals from minutes to millennia such that yields vary by three orders of magnitude for a given reference interval. Sediment delivery from natural dam breaks and pyroclastic eruptions dominate these yields for a given reference interval. Even if averaged over 10(2)-10(3) yr, the contribution of individual disturbances may remain elevated above corresponding catchment denudation rates. I further estimate rates of sediment (re-)mobilisation by individual giant terrestrial and submarine mass movements. Less than 50 postglacial submarine mass movements have involved an equivalent of similar to 10\% of the contemporary annual global flux of fluvial sediment to Earth's oceans, while mobilisation rates by individual events rival the decadal-scale sediment discharge from tectonically active orogens such as Taiwan or New Zealand. Sediment flushing associated with catastrophic natural dam breaks is non-stationary and shows a distinct kink at the last glacial-interglacial transition, owing to the drainage of very large late Pleistocene ice-marginal lakes. Besides emphasising the contribution of high-magnitude and low-frequency events to the global sediment cascade, these findings stress the importance of sediment storage for fuelling rather than buffering high sediment transport rates.}, language = {en} } @article{HuggelClagueKorup2012, author = {Huggel, Christian and Clague, John J. and Korup, Oliver}, title = {Is climate change responsible for changing landslide activity in high mountains?}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {37}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.2223}, pages = {77 -- 91}, year = {2012}, abstract = {Climate change, manifested by an increase in mean, minimum, and maximum temperatures and by more intense rainstorms, is becoming more evident in many regions. An important consequence of these changes may be an increase in landslides in high mountains. More research, however, is necessary to detect changes in landslide magnitude and frequency related to contemporary climate, particularly in alpine regions hosting glaciers, permafrost, and snow. These regions not only are sensitive to changes in both temperature and precipitation, but are also areas in which landslides are ubiquitous even under a stable climate. We analyze a series of catastrophic slope failures that occurred in the mountains of Europe, the Americas, and the Caucasus since the end of the 1990s. We distinguish between rock and ice avalanches, debris flows from de-glaciated areas, and landslides that involve dynamic interactions with glacial and river processes. Analysis of these events indicates several important controls on slope stability in high mountains, including: the non-linear response of firn and ice to warming; three-dimensional warming of subsurface bedrock and its relation to site geology; de-glaciation accompanied by exposure of new sediment; and combined short-term effects of precipitation and temperature. Based on several case studies, we propose that the following mechanisms can significantly alter landslide magnitude and frequency, and thus hazard, under warming conditions: (1) positive feedbacks acting on mass movement processes that after an initial climatic stimulus may evolve independently of climate change; (2) threshold behavior and tipping points in geomorphic systems; (3) storage of sediment and ice involving important lag-time effects.}, language = {en} } @article{KorupGoeruemHayakawa2012, author = {Korup, Oliver and G{\"o}r{\"u}m, Tolga and Hayakawa, Yuichi}, title = {Without power? - Landslide inventories in the face of climate change}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {37}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.2248}, pages = {92 -- 99}, year = {2012}, abstract = {Projected scenarios of climate change involve general predictions about the likely changes to the magnitude and frequency of landslides, particularly as a consequence of altered precipitation and temperature regimes. Whether such landslide response to contemporary or past climate change may be captured in differing scaling statistics of landslide size distributions and the erosion rates derived thereof remains debated. We test this notion with simple Monte Carlo and bootstrap simulations of statistical models commonly used to characterize empirical landslide size distributions. Our results show that significant changes to total volumes contained in such inventories may be masked by statistically indistinguishable scaling parameters, critically depending on, among others, the size of the largest of landslides recorded. Conversely, comparable model parameter values may obscure significant, i.e. more than twofold, changes to landslide occurrence, and thus inferred rates of hillslope denudation and sediment delivery to drainage networks. A time series of some of Earth's largest mass movements reveals clustering near and partly before the last glacial-interglacial transition and a distinct step-over from white noise to temporal clustering around this period. However, elucidating whether this is a distinct signal of first-order climate-change impact on slope stability or simply coincides with a transition from short-term statistical noise to long-term steady-state conditions remains an important research challenge.}, language = {en} } @unpublished{HeimsathKorup2012, author = {Heimsath, Arjun M. and Korup, Oliver}, title = {Quantifying rates and processes of landscape evolution}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {37}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {2}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0197-9337}, doi = {10.1002/esp.2251}, pages = {249 -- 251}, year = {2012}, language = {en} } @article{UhlmannKorupHuggeletal.2013, author = {Uhlmann, Manuela and Korup, Oliver and Huggel, Christian and Fischer, Luzia and Kargel, Jeffrey S.}, title = {Supra-glacial deposition and flux of catastrophic rock-slope failure debris, south-central Alaska}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {38}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {7}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.3311}, pages = {675 -- 682}, year = {2013}, abstract = {The ongoing debate over the effects of global environmental change on Earth's cryosphere calls for detailed knowledge about process rates and their variability in cold environments. In this context, appraisals of the coupling between glacier dynamics and para-glacial erosion rates in tectonically active mountains remain rare. We contribute to filling this knowledge gap and present an unprecedented regional-scale inventory of supra-glacial sediment flux and hillslope erosion rates inferred from an analysis of 123 large (> 0 center dot 1km2) catastrophic bedrock landslides that fell onto glaciers in the Chugach Mountains, Alaska, as documented by satellite images obtained between 1972 to 2008. Assuming these supra-glacial landslide deposits to be passive strain markers we infer minimum decadal-scale sediment yields of 190 to 7400tkm-2yr-1 for a given glacier-surface cross-section impacted by episodic rock-slope failure. These rates compare to reported fluvial sediment yields in many mountain rivers, but are an order of magnitude below the extreme sediment yields measured at the snouts of Alaskan glaciers, indicating that the bulk of debris discharged derives from en-glacial, sub-glacial or ice-proximal sources. We estimate an average minimum para-glacial erosion rate by large, episodic rock-slope failures at 0 center dot 5-0 center dot 7mmyr-1 in the Chugach Mountains over a 50-yr period, with earthquakes likely being responsible for up to 73\% of this rate. Though ranking amongst the highest decadal landslide erosion rates for this size of study area worldwide, our inferred rates of hillslope erosion in the Chugach Mountains remain an order of magnitude below the pace of extremely rapid glacial sediment export and glacio-isostatic surface uplift previously reported from the region.}, language = {en} } @article{BloetheKorup2013, author = {Bl{\"o}the, Jan Henrik and Korup, Oliver}, title = {Millennial lag times in the Himalayan sediment routing system}, series = {Earth \& planetary science letters}, volume = {382}, journal = {Earth \& planetary science letters}, number = {20}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2013.08.044}, pages = {38 -- 46}, year = {2013}, abstract = {Any understanding of sediment routing from mountain belts to their forelands and offshore sinks remains incomplete without estimates of intermediate storage that decisively buffers sediment yields from erosion rates, attenuates water and sediment fluxes, and protects underlying bedrock from incision. We quantify for the first time the sediment stored in > 38000 mainly postglacial Himalayan valley fills, based on an empirical volume-area scaling of valley-fill outlines automatically extracted from digital topographic data. The estimated total volume of 690(+452/-242) km(3) is mostly contained in few large valley fills > 1 km(3), while catastrophic mass wasting adds another 177(31) km(3). Sediment storage volumes are highly disparate along the strike of the orogen. Much of the Himalaya's stock of sediment is sequestered in glacially scoured valleys that provide accommodation space for similar to 44\% of the total volume upstream of the rapidly exhuming and incising syntaxes. Conversely, the step-like long-wave topography of the central Himalayas limits glacier extent, and thus any significant glacier-derived storage of sediment away from tectonic basins. We show that exclusive removal of Himalayan valley fills could nourish contemporary sediment flux from the Indus and Brahmaputra basins for > 1 kyr, though individual fills may attain residence times of > 100 kyr. These millennial lag times in the Himalayan sediment routing system may sufficiently buffer signals of short-term seismic as well as climatic disturbances, thus complicating simple correlation and interpretation of sedimentary archives from the Himalayan orogen, its foreland, and its submarine fan systems. (C) 2013 Elsevier B.V. All rights reserved.}, language = {en} } @article{HoffmannSchlummerNotebaertetal.2013, author = {Hoffmann, Thomas and Schlummer, Manuela and Notebaert, Bastiaan and Verstraeten, Gert and Korup, Oliver}, title = {Carbon burial in soil sediments from Holocene agricultural erosion, Central Europe}, series = {Global biogeochemical cycles}, volume = {27}, journal = {Global biogeochemical cycles}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0886-6236}, doi = {10.1002/gbc.20071}, pages = {828 -- 835}, year = {2013}, abstract = {Natural and human-induced erosion supplies high amounts of soil organic carbon (OC) to terrestrial drainage networks. Yet OC fluxes in rivers were considered in global budgets only recently. Modern estimates of annual carbon burial in inland river sediments of 0.6 Gt C, or 22\% of C transferred from terrestrial ecosystems to river channels, consider only lakes and reservoirs and disregard any long-term carbon burial in hillslope or floodplain sediments. Here we present the first assessment of sediment-bound OC storage in Central Europe from a synthesis of similar to 1500 Holocene hillslope and floodplain sedimentary archives. We show that sediment storage increases with drainage-basin size due to more extensive floodplains in larger river basins. However, hillslopes retain hitherto unrecognized high amounts of eroded soils at the scale of large river basins such that average agricultural erosion rates during the Holocene would have been at least twice as high as reported previously. This anthropogenic hillslope sediment storage exceeds floodplain storage in drainage basins <10(5) km(2), challenging the notion that floodplains are the dominant sedimentary sinks. In terms of carbon burial, OC concentrations in floodplains exceed those on hillslopes, and net OC accumulation rates in floodplains (0.70.2 g C m(-2)a(-1)) surpass those on hillslopes (0.40.1 g C m(-2)a(-1)) over the last 7500 years. We conclude that carbon burial in floodplains and on hillslopes in Central Europe exceeds terrestrial carbon storage in lakes and reservoirs by at least 2 orders of magnitude and should thus be considered in continental carbon budgets.}, language = {en} } @article{KorupHayakawaCodileanetal.2014, author = {Korup, Oliver and Hayakawa, Yuichi and Codilean, Alexandru T. and Matsushi, Yuki and Saito, Hitoshi and Oguchi, Takashi and Matsuzaki, Hiroyuki}, title = {Japan's sediment flux to the Pacific Ocean revisited}, series = {Earth science reviews : the international geological journal bridging the gap between research articles and textbooks}, volume = {135}, journal = {Earth science reviews : the international geological journal bridging the gap between research articles and textbooks}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-8252}, doi = {10.1016/j.earscirev.2014.03.004}, pages = {1 -- 16}, year = {2014}, abstract = {Quantifying volumes and rates of delivery of terrestrial sediment from island arcs to subduction zones is indispensable for refining estimates of the thickness of trench fills that may eventually control the location and timing of submarine landslides and tsunami-generating mega-earthquakes. Despite these motivating insights, knowledge about the rates of erosion and sediment export from the Japanese islands to their Pacific subduction zones remains patchy regardless of the increasing availability of highly resolved data on surface deformation, climate, geology, and topography. Traditionally, natural erosion rates across the island arc have been estimated from regression of topographic catchment metrics and reservoir sedimentation rates that were recorded over several years to decades. We review current research in this context, correct for a systematic bias in one of the most widely used predictions, and present new estimates of decadal to millennial-scale erosion rates of Japan's terrestrial inner forearc. We draw on several independent and unprecedented inventories of mass wasting, reservoir sedimentation, and concentrations of cosmogenic Be-10 in river sands. We find that natural Be-10-derived denudation rates of several mm yr(-1) in the Japanese Alps have been sustained over several centuries to millennia, and are, within error, roughly consistent with sediment yields inferred from artificial reservoir sedimentation. Local exceptions may likely result from release of sediment storage or regional landsliding episodes that trigger transient sediment pulses. Our synopsis further reveals that catchments draining Japan's eastern seaboard differ distinctly in their tectonic, lithological, topographic, and climatic characteristics between the Tohoku, Japanese Alps, and Nankai inner forearc segments, which is underscored by a marked asymmetric pattern of erosion rates along the island arc. Erosion rates are highest (up to at least 3 mm yr(-1)) in the Japanese Alps that mark the collision of two subduction zones, where high topographic relief, hillslope and bedrock-channel steepness foster rapid denudation by mass wasting. Comparable, if slightly lower, erosion rates characterise the Nankai inner forearc in southwest Japan, most likely due to higher typhoon-driven rainfall totals and variability rather than its high topographic relief. In contrast, our estimated erosion and flux rates are lowest in the Tohoku inner forearc catchments that feed sediment into the Japan Trench. We conclude that collisional mountain building of the Japanese Alps drives some of the highest erosion rates in the island arc despite similar uplift and precipitation controls in southwest Japan. We infer that, prior to extensive river damming, reservoir construction, and coastal works, the gross of Japan's total sediment export to the Pacific Ocean entered the accretionary margin of the Nankai Trough as opposed to the comparatively sediment-starved Japan Trench. Compared to documented contemporary rates of sediment flux from mountainous catchments elsewhere in the Pacific, the rivers draining Japan's inner forearc take an intermediate position despite high relief, steep slopes, very high seismicity, and frequent rainstorms. However, the average rates of millennial-scale denudation in the Japanese Alps particularly are amongst the highest reported worldwide. Local mismatches between these late Holocene and modern rates emphasise the anthropogenic fingerprint on sediment retention that may have significantly reduced the island arc's mass flux to its subduction zones, as is the case elsewhere in east and southeast Asia. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{BloetheMunackKorupetal.2014, author = {Bloethe, Jan H. and Munack, Henry and Korup, Oliver and Fuelling, Alexander and Garzanti, Eduardo and Resentini, Alberto and Kubik, Peter W.}, title = {Late Quaternary valley infill and dissection in the Indus River, western Tibetan Plateau margin}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {94}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2014.04.011}, pages = {102 -- 119}, year = {2014}, abstract = {The Indus, one of Earth's major rivers, drains large parts of the NW Himalaya and the Transhimalayan ranges that form part of the western Tibetan Plateau margin. In the western Himalayan syntaxis, where local topographic relief exceeds 7 km, the Indus has incised a steep bedrock gorge at rates of several mm yr(-1). Upstream, however, the upper Indus and its tributaries alternate between bedrock gorges and broad alluvial flats flanked by the Ladakh and Zanskar ranges. We review the late Quaternary valley history in this region with a focus on the confluence of the Indus and Zanskar Rivers, where vast alluvial terrace staircases and lake sediments record major episodes of aggradation and incision. New absolute dating of high-level fluvial terrace remnants using cosmogenic Be-10, optically and infrared stimulated luminescence (OSL, IRSL) indicates at least two phases of late Quaternary valley infilling. These phases commenced before similar to 200 ka and similar to 50-20 ka, judging from terrace treads stranded >150 m and similar to 30-40 m above modern river levels, respectively. Numerous stacks of lacustrine sediments that straddle the Indus River >200 km between the city of Leh and the confluence with the Shyok River share a distinct horizontal alignment. Constraints from IRSL samples of lacustrine sequences from the Leh-Spituk area reveal a protracted lake phase from >177 ka to 72 ka, locally accumulating >50-m thick deposits. In the absence of tectonic faulting, major lithological differences, and stream capture, we attribute the formation of this and other large lakes in the region to natural damming by large landslides, glaciers, and alluvial fans. The overall patchy landform age constraints from earlier studies can be reconciled by postulating a major deglacial control on sediment flux, valley infilling, and subsequent incision that has been modulated locally by backwater effects of natural damming. While comparison with Pleistocene monsoon proxies reveals no obvious correlation, a lateor post-glacial sediment pulse seems a more likely source of this widespread sedimentation that has partly buried the dissected bedrock topography. Overall, the long residence times of fluvial, alluvial and lacustrine deposits in the region (>500 ka) support previous studies, but remain striking given the dominantly steep slopes and deeply carved valleys that characterise this high-altitude mountain desert. Recalculated late Quaternary rates of fluvial bedrock incision in the Indus and Zanskar of 1.5 +/- 0.2 mm yr(-1) are at odds with the longevity of juxtaposed valley-fill deposits, unless a lack of decisive lateral fluvial erosion helps to preserve these late Pleistocene sedimentary archives. We conclude that alternating, similar to 10(4)-yr long, phases of massive infilling and incision have dominated the late Quaternary history of the Indus valley below the western Tibetan Plateau margin. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} }