@article{TimmeBrand2020, author = {Timme, Sinika and Brand, Ralf}, title = {Affect and exertion during incremental physical exercise: Examining changes using automated facial action analysis and experiential self-report}, series = {PLoS ONE}, volume = {15}, journal = {PLoS ONE}, number = {2}, publisher = {PLOS ONE / Public Library of Science}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0228739}, pages = {1 -- 17}, year = {2020}, abstract = {Recent research indicates that affective responses during exercise are an important determinant of future exercise and physical activity. Thus far these responses have been measured with standardized self-report scales, but this study used biometric software for automated facial action analysis to analyze the changes that occur during physical exercise. A sample of 132 young, healthy individuals performed an incremental test on a cycle ergometer. During that test the participants' faces were video-recorded and the changes were algorithmically analyzed at frame rate (30 fps). Perceived exertion and affective valence were measured every two minutes with established psychometric scales. Taking into account anticipated inter-individual variability, multilevel regression analysis was used to model how affective valence and ratings of perceived exertion (RPE) covaried with movement in 20 facial action areas. We found the expected quadratic decline in self-reported affective valence (more negative) as exercise intensity increased. Repeated measures correlation showed that the facial action mouth open was linked to changes in (highly intercorrelated) affective valence and RPE. Multilevel trend analyses were calculated to investigate whether facial actions were typically linked to either affective valence or RPE. These analyses showed that mouth open and jaw drop predicted RPE, whereas (additional) nose wrinkle was indicative for the decline in affective valence. Our results contribute to the view that negative affect, escalating with increasing exercise intensity, may be the body's essential warning signal that physiological overload is imminent. We conclude that automated facial action analysis provides new options for researchers investigating feelings during exercise. In addition, our findings offer physical educators and coaches a new way of monitoring the affective state of exercisers, without interrupting and asking them.}, language = {en} } @misc{TimmeBrand2020, author = {Timme, Sinika and Brand, Ralf}, title = {Affect and exertion during incremental physical exercise}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {601}, issn = {1866-8364}, doi = {10.25932/publishup-44513}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445132}, pages = {19}, year = {2020}, abstract = {Recent research indicates that affective responses during exercise are an important determinant of future exercise and physical activity. Thus far these responses have been measured with standardized self-report scales, but this study used biometric software for automated facial action analysis to analyze the changes that occur during physical exercise. A sample of 132 young, healthy individuals performed an incremental test on a cycle ergometer. During that test the participants' faces were video-recorded and the changes were algorithmically analyzed at frame rate (30 fps). Perceived exertion and affective valence were measured every two minutes with established psychometric scales. Taking into account anticipated inter-individual variability, multilevel regression analysis was used to model how affective valence and ratings of perceived exertion (RPE) covaried with movement in 20 facial action areas. We found the expected quadratic decline in self-reported affective valence (more negative) as exercise intensity increased. Repeated measures correlation showed that the facial action mouth open was linked to changes in (highly intercorrelated) affective valence and RPE. Multilevel trend analyses were calculated to investigate whether facial actions were typically linked to either affective valence or RPE. These analyses showed that mouth open and jaw drop predicted RPE, whereas (additional) nose wrinkle was indicative for the decline in affective valence. Our results contribute to the view that negative affect, escalating with increasing exercise intensity, may be the body's essential warning signal that physiological overload is imminent. We conclude that automated facial action analysis provides new options for researchers investigating feelings during exercise. In addition, our findings offer physical educators and coaches a new way of monitoring the affective state of exercisers, without interrupting and asking them.}, language = {en} } @misc{WolffSchindlerBrand2015, author = {Wolff, Wanja and Schindler, Sebastian and Brand, Ralf}, title = {The effect of implicitly incentivized faking on explicit and implicit measures of doping attitude}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {524}, issn = {1866-8364}, doi = {10.25932/publishup-40985}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409854}, pages = {10}, year = {2015}, abstract = {The Implicit Association Test (IAT) aims to measure participants' automatic evaluation of an attitude object and is useful especially for the measurement of attitudes related to socially sensitive subjects, e.g. doping in sports. Several studies indicate that IAT scores can be faked on instruction. But fully or semi-instructed research scenarios might not properly reflect what happens in more realistic situations, when participants secretly decide to try faking the test. The present study is the first to investigate IAT faking when there is only an implicit incentive to do so. Sixty-five athletes (22.83 years +/- 2.45; 25 women) were randomly assigned to an incentive-to-fake condition or a control condition. Participants in the incentive-to-fake condition were manipulated to believe that athletes with lenient doping attitudes would be referred to a tedious 45-minute anti-doping program. Attitudes were measured with the pictorial doping brief IAT (BIAT) and with the Performance Enhancement Attitude Scale (PEAS). A one-way MANOVA revealed significant differences between conditions after the manipulation in PEAS scores, but not in the doping BIAT. In the light of our hypothesis this suggests that participants successfully faked an exceedingly negative attitude to doping when completing the PEAS, but were unsuccessful in doing so on the reaction time-based test. This study assessed BIAT faking in a setting that aimed to resemble a situation in which participants want to hide their attempts to cheat. The two measures of attitude were differentially affected by the implicit incentive. Our findings provide evidence that the pictorial doping BIAT is relatively robust against spontaneous and naive faking attempts. (B) IATs might be less prone to faking than implied by previous studies.}, language = {en} } @misc{WolffSchindlerEnglertetal.2016, author = {Wolff, Wanja and Schindler, Sebastian and Englert, Christoph and Brand, Ralf and Kissler, Johanna}, title = {Uninstructed BIAT faking when ego depleted or in normal state}, series = {BMC neuroscience}, journal = {BMC neuroscience}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407342}, pages = {12}, year = {2016}, abstract = {Background: Deception can distort psychological tests on socially sensitive topics. Understanding the cerebral processes that are involved in such faking can be useful in detection and prevention of deception. Previous research shows that faking a brief implicit association test (BIAT ) evokes a characteristic ERP response. It is not yet known whether temporarily available self-control resources moderate this response. We randomly assigned 22 participants (15 females, 24.23 ± 2.91 years old) to a counterbalanced repeated-measurements design. Participants first com- pleted a Brief-IAT (BIAT ) on doping attitudes as a baseline measure and were then instructed to fake a negative dop - ing attitude both when self-control resources were depleted and non-depleted. Cerebral activity during BIAT perfor - mance was assessed using high-density EEG. Results: Compared to the baseline BIAT, event-related potentials showed a first interaction at the parietal P1, while significant post hoc differences were found only at the later occurring late positive potential. Here, signifi- cantly decreased amplitudes were recorded for 'normal' faking, but not in the depletion condition. In source space, enhanced activity was found for 'normal' faking in the bilateral temporoparietal junction. Behaviorally, participants were successful in faking the BIAT successfully in both conditions. Conclusions: Results indicate that temporarily available self-control resources do not affect overt faking success on a BIAT. However, differences were found on an electrophysiological level. This indicates that while on a phenotypical level self-control resources play a negligible role in deliberate test faking the underlying cerebral processes are markedly different.}, language = {en} } @misc{WolffBrand2016, author = {Wolff, Wanja and Brand, Ralf}, title = {Editorial: using substances to enhance performance}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {443}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407274}, pages = {2}, year = {2016}, language = {en} } @misc{BrandWolffZiegler2016, author = {Brand, Ralf and Wolff, Wanja and Ziegler, Matthias}, title = {Drugs as instruments}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {434}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406738}, pages = {11}, year = {2016}, abstract = {Neuroenhancement (NE) is the non-medical use of psychoactive substances to produce a subjective enhancement in psychological functioning and experience. So far empirical investigations of individuals' motivation for NE however have been hampered by the lack of theoretical foundation. This study aimed to apply drug instrumentalization theory to user motivation for NE. We argue that NE should be defined and analyzed from a behavioral perspective rather than in terms of the characteristics of substances used for NE. In the empirical study we explored user behavior by analyzing relationships between drug options (use over-the-counter products, prescription drugs, illicit drugs) and postulated drug instrumentalization goals (e.g., improved cognitive performance, counteracting fatigue, improved social interaction). Questionnaire data from 1438 university students were subjected to exploratory and confirmatory factor analysis to address the question of whether analysis of drug instrumentalization should be based on the assumption that users are aiming to achieve a certain goal and choose their drug accordingly or whether NE behavior is more strongly rooted in a decision to try or use a certain drug option. We used factor mixture modeling to explore whether users could be separated into qualitatively different groups defined by a shared "goal X drug option" configuration. Our results indicate, first, that individuals decisions about NE are eventually based on personal attitude to drug options (e.g., willingness to use an over-the-counter product but not to abuse prescription drugs) rather than motivated by desire to achieve a specific goal (e.g., fighting tiredness) for which different drug options might be tried. Second, data analyses suggested two qualitatively different classes of users. Both predominantly used over-the-counter products, but "neuroenhancers" might be characterized by a higher propensity to instrumentalize over-the-counter products for virtually all investigated goals whereas "fatigue-fighters" might be inclined to use over-the-counter products exclusively to fight fatigue. We believe that psychological investigations like these are essential, especially for designing programs to prevent risky behavior.}, language = {en} } @article{SchindlerWolffKissleretal.2015, author = {Schindler, Sebastian and Wolff, Wanja and Kissler, Johanna M. and Brand, Ralf}, title = {Cerebral correlates of faking}, series = {Frontiers in Behavioral Neuroscience}, volume = {9}, journal = {Frontiers in Behavioral Neuroscience}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5153}, doi = {10.3389/fnbeh.2015.00139}, pages = {1 -- 13}, year = {2015}, abstract = {Direct assessment of attitudes toward socially sensitive topics can be affected by deception attempts. Reaction-time based indirect measures, such as the Implicit Association Test (IAT), are less susceptible to such biases. Neuroscientific evidence shows that deception can evoke characteristic ERP differences. However, the cerebral processes involved in faking an IAT are still unknown. We randomly assigned 20 university students (15 females, 24.65 +/- 3.50 years of age) to a counterbalanced repeated-measurements design, requesting them to complete a Brief-IAT (BIAT) on attitudes toward doping without deception instruction, and with the instruction to fake positive and negative doping attitudes. Cerebral activity during BIAT completion was assessed using high-density EEG. Event-related potentials during faking revealed enhanced frontal and reduced occipital negativity, starting around 150 ms after stimulus presentation. Further, a decrease in the P300 and LPP components was observed. Source analyses showed enhanced activity in the right inferior frontal gyrus between 150 and 200 ms during faking, thought to reflect the suppression of automatic responses. Further, more activity was found for faking in the bilateral middle occipital gyri and the bilateral temporoparietal junction. Results indicate that faking reaction-time based tests alter brain processes from early stages of processing and reveal the cortical sources of the effects. Analyzing the EEG helps to uncover response patterns in indirect attitude tests and broadens our understanding of the neural processes involved in such faking. This knowledge might be useful for uncovering faking in socially sensitive contexts, where attitudes are likely to be concealed.}, language = {en} } @misc{SchindlerWolffKissleretal.2015, author = {Schindler, Sebastian and Wolff, Wanja and Kissler, Johanna M. and Brand, Ralf}, title = {Cerebral correlates of faking}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {419}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406251}, pages = {13}, year = {2015}, abstract = {Direct assessment of attitudes toward socially sensitive topics can be affected by deception attempts. Reaction-time based indirect measures, such as the Implicit Association Test (IAT), are less susceptible to such biases. Neuroscientific evidence shows that deception can evoke characteristic ERP differences. However, the cerebral processes involved in faking an IAT are still unknown. We randomly assigned 20 university students (15 females, 24.65 +/- 3.50 years of age) to a counterbalanced repeated-measurements design, requesting them to complete a Brief-IAT (BIAT) on attitudes toward doping without deception instruction, and with the instruction to fake positive and negative doping attitudes. Cerebral activity during BIAT completion was assessed using high-density EEG. Event-related potentials during faking revealed enhanced frontal and reduced occipital negativity, starting around 150 ms after stimulus presentation. Further, a decrease in the P300 and LPP components was observed. Source analyses showed enhanced activity in the right inferior frontal gyrus between 150 and 200 ms during faking, thought to reflect the suppression of automatic responses. Further, more activity was found for faking in the bilateral middle occipital gyri and the bilateral temporoparietal junction. Results indicate that faking reaction-time based tests alter brain processes from early stages of processing and reveal the cortical sources of the effects. Analyzing the EEG helps to uncover response patterns in indirect attitude tests and broadens our understanding of the neural processes involved in such faking. This knowledge might be useful for uncovering faking in socially sensitive contexts, where attitudes are likely to be concealed.}, language = {en} }