@phdthesis{Bilkay2012, author = {Bilkay, Taybet}, title = {Thiophen und Benzodithiophen basierte organische Halbleiter f{\"u}r aus L{\"o}sung prozessierbare Feldeffekttransistoren}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66164}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Diese Arbeit befasst sich mit der Synthese und Charakterisierung von organol{\"o}slichen Thiophen und Benzodithiophen basierten Materialien und ihrer Anwendung als aktive lochleitende Halbleiterschichten in Feldeffekttransistoren. Im ersten Teil der Arbeit wird durch eine gezielte Modifikation des Thiophengrundger{\"u}stes eine neue Comonomer-Einheit f{\"u}r die Synthese von Thiophen basierten Copolymeren erfolgreich dargestellt. Die hydrophoben Hexylgruppen in der 3-Position des Thiophens werden teilweise durch hydrophile 3,6-Dioxaheptylgruppen ersetzt. {\"U}ber die Grignard-Metathese nach McCullough werden statistische Copolymere mit unterschiedlichen molaren Anteilen vom hydrophoben Hexyl- und hydrophilem 3,6-Dioxaheptylgruppen 1:1 (P-1), 1:2 (P-2) und 2:1 (P-3) erfolgreich hergestellt. Auch die Synthese eines definierten Blockcopolymers BP-1 durch sequentielle Addition der Comonomere wird realisiert. Optische und elektrochemische Eigenschaften der neuartigen Copolymere sind vergleichbar mit P3HT. Mit allen Copolymeren wird ein charakteristisches Transistorverhalten in einem Top-Gate/Bottom-Kontakt-Aufbau erhalten. Dabei werden mit P-1 als die aktive Halbleiterschicht im Bauteil, PMMA als Dielektrikum und Silber als Gate-Elektrode Mobilit{\"a}ten von bis zu 10-2 cm2/Vs erzielt. Als Folge der optimierten Grenzfl{\"a}che zwischen Dielektrikum und Halbleiter wird eine Verbesserung der Luftstabilit{\"a}t der Transistoren {\"u}ber mehrere Monate festgestellt. Im zweiten Teil der Arbeit werden Benzodithiophen basierte organische Materialien hergestellt. F{\"u}r die Synthese der neuartigen Benzodithiophen-Derivate wird die Schl{\"u}sselverbindung TIPS-BDT in guter Ausbeute dargestellt. Die Difunktionalisierung von TIPS-BDT in den 2,6-Positionen {\"u}ber eine elektrophile Substitution liefert die gew{\"u}nschten Dibrom- und Distannylmonomere. Zun{\"a}chst werden {\"u}ber die Stille-Reaktion alternierende Copolymere mit alkylierten Fluoren- und Chinoxalin-Einheiten realisiert. Alle Copolymere zeichnen sich durch eine gute L{\"o}slichkeit in g{\"a}ngigen organischen L{\"o}sungsmitteln, hohe thermische Stabilit{\"a}t und durch gute Filmbildungseigenschaften aus. Des Weiteren sind alle Copolymere mit HOMO Lagen h{\"o}her als -6.3 eV, verglichen mit den Thiophen basierten Copolymeren (P-1 bis P-3), sehr oxidationsstabil. Diese Copolymere zeigen amorphes Verhalten in den Halbleiterschichten in OFETs auf und es werden Mobilit{\"a}ten bis zu 10-4 cm2/Vs erreicht. Eine Abh{\"a}ngigkeit der Bauteil-Leistung von dem Zinngehalt-Rest im Polymer wird nachgewiesen. Ein Zinngehalt von {\"u}ber 0.6 \% kann enormen Einfluss auf die Mobilit{\"a}t aus{\"u}ben, da die funktionellen SnMe3-Gruppen als Fallenzust{\"a}nde wirken k{\"o}nnen. Alternativ wird das alternierende TIPS-BDT/Fluoren-Copolymer P-5-Stille nach der Suzuki-Methode polymerisiert. Mit P-5-Suzuki als die aktive organische Halbleiterschicht im OFET wird die h{\"o}chste Mobilit{\"a}t von 10-2 cm2/Vs erzielt. Diese Mobilit{\"a}t ist somit um zwei Gr{\"o}ßenordnungen h{\"o}her als bei P-5-Stille, da die Fallenzust{\"a}nde in diesem Fall minimiert werden und folglich der Ladungstransport verbessert wird. Sowohl das Homopolymer P-12 als auch das Copolymer mit dem aromatischen Akzeptor Benzothiadiazol P-9 f{\"u}hren zu schwerl{\"o}slichen Polymeren. Aus diesem Grund werden einerseits Terpolymere aus TIPS-BDT/Fluoren/BTD-Einheiten P-10 und P-11 aufgebaut und andererseits wird versucht die TIPS-BDT-Einheit in die Seitenkette des Styrols einzubringen. Mit der Einf{\"u}hrung von BTD in die Hauptpolymerkette werden insbesondere die Absorptions- und die elektrochemischen Eigenschaften beeinflusst. Im Vergleich zu dem TIPS-BDT/Fluoren-Copolymer reicht die Absorption bis in den sichtbaren Bereich und die LUMO Lage wird zu niederen Werten verschoben. Eine Verbesserung der Leistung in den Bauteilen wird jedoch nicht festgestellt. Die erfolgreiche erstmalige Synthese von TIPS-BDT als Seitenkettenpolymer an Styrol P-13 f{\"u}hrt zu einem l{\"o}slichen und amorphen Polymer mit vergleichbaren Mobilit{\"a}ten von Styrol basierten Polymeren (µ = 10-5 cm2/Vs) im OFET. Ein weiteres Ziel dieser Arbeit ist die Synthese von niedermolekularen organol{\"o}slichen Benzodithiophen-Derivaten. {\"U}ber Suzuki- und Stille-Reaktionen ist es erstmals m{\"o}glich, verschiedenartige Aromaten {\"u}ber eine σ-Bindung an TIPS-BDT in den 2,6-Positionen zu kn{\"u}pfen. Die UV/VIS-Untersuchungen zeigen, dass die Absorption durch die Verl{\"a}ngerung der π-Konjugationsl{\"a}nge zu h{\"o}heren Wellenl{\"a}ngen verschoben wird. Dar{\"u}ber hinaus ist es m{\"o}glich, thermisch vernetzbare Gruppen wie Allyloxy in das Molek{\"u}lger{\"u}st einzubauen. Das Einf{\"u}hren von F-Atomen in das Molek{\"u}lger{\"u}st resultiert in einer verst{\"a}rkten Packungsordnung im Fluorbenzen funktionalisiertem TIPS-BDT (SM-4) im Festk{\"o}rper mit sehr guten elektronischen Eigenschaften im OFET, wobei Mobilit{\"a}ten bis zu 0.09 cm2/Vs erreicht werden.}, language = {de} } @phdthesis{Bomm2012, author = {Bomm, Jana}, title = {Von Gold Plasmonen und Exzitonen : Synthese, Charakterisierung und Applikationen von Gold Nanopartikeln}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66402}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {In dieser Arbeit wurden sph{\"a}rische Gold Nanopartikel (NP) mit einem Durchmesser gr{\"o}ßer ~ 2 nm, Gold Quantenpunkte (QDs) mit einem Durchmesser kleiner ~ 2 nm sowie Gold Nanost{\"a}bchen (NRs) unterschiedlicher L{\"a}nge hergestellt und optisch charakterisiert. Zudem wurden zwei neue Synthesevarianten f{\"u}r die Herstellung thermosensitiver Gold QDs entwickelt werden. Sph{\"a}rische Gold NP zeigen eine Plasmonenbande bei ~ 520 nm, die auf die kollektive Oszillation von Elektronen zur{\"u}ckzuf{\"u}hren ist. Gold NRs weisen aufgrund ihrer anisotropen Form zwei Plasmonenbanden auf, eine transversale Plasmonenbande bei ~ 520 nm und eine longitudinale Plasmonenbande, die vom L{\"a}nge-zu-Durchmesser-Verh{\"a}ltnis der Gold NRs abh{\"a}ngig ist. Gold QDs besitzen keine Plasmonenbande, da ihre Elektronen Quantenbeschr{\"a}nkungen unterliegen. Gold QDs zeigen jedoch aufgrund diskreter Energieniveaus und einer Bandl{\"u}cke Photolumineszenz (PL). Die synthetisierten Gold QDs besitzen eine Breitbandlumineszenz im Bereich von ~ 500-800 nm, wobei die Lumineszenz-eigenschaften (Emissionspeak, Quantenausbeute, Lebenszeiten) stark von den Herstellungs-bedingungen und den Oberfl{\"a}chenliganden abh{\"a}ngen. Die PL in Gold QDs ist ein sehr komplexes Ph{\"a}nomen und r{\"u}hrt vermutlich von Singulett- und Triplett-Zust{\"a}nden her. Gold NRs und Gold QDs konnten in verschiedene Polymere wie bspw. Cellulosetriacetat eingearbeitet werden. Polymernanokomposite mit Gold NRs wurden erstmals unter definierten Bedingungen mechanisch gezogen, um Filme mit optisch anisotropen (richtungsabh{\"a}ngigen) Eigenschaften zu erhalten. Zudem wurde das Temperaturverhalten von Gold NRs und Gold QDs untersucht. Es konnte gezeigt werden, dass eine lokale Variation der Gr{\"o}ße und Form von Gold NRs in Polymernanokompositen durch Temperaturerh{\"o}hung auf 225-250 °C erzielt werden kann. Es zeigte sich, dass die PL der Gold QDs stark temperaturabh{\"a}ngig ist, wodurch die PL QY der Proben beim Abk{\"u}hlen (-7 °C) auf knapp 30 \% verdoppelt und beim Erhitzen auf 70 °C nahezu vollst{\"a}ndig gel{\"o}scht werden konnte. Es konnte demonstriert werden, dass die L{\"a}nge der Alkylkette des Oberfl{\"a}chenliganden einen Einfluss auf die Temperaturstabilit{\"a}t der Gold QDs hat. Zudem wurden verschiedene neuartige und optisch anisotrope Sicherheitslabels mit Gold NRs sowie thermosensitive Sicherheitslabel mit Gold QDs entwickelt. Ebenso scheinen Gold NRs und QDs f{\"u}r die und die Optoelektronik (bspw. Datenspeicherung) und die Medizin (bspw. Krebsdiagnostik bzw. -therapie) von großem Interesse zu sein.}, language = {de} } @phdthesis{Mucic2012, author = {Mucic, Nenad}, title = {Thermodynamics, kinetics and rheology of surfactant adsorption layers at water/oil interfaces}, address = {Potsdam}, year = {2012}, language = {en} } @phdthesis{Debatin2012, author = {Debatin, Franziska}, title = {Eine isoretikulare Serie mikropor{\"o}ser, metall-organischer Netzwerke basierend auf 2-substituierten Imidazolat-4-amid-5-imidaten und Zink- oder Cobalt-Zentren: Synthesen, Strukturen und Eigenschaften}, address = {Potsdam}, pages = {XII, 97, LV S.}, year = {2012}, language = {de} } @phdthesis{Dorff2012, author = {Dorff, Giselher}, title = {Eigenschaftsverbesserung von Polylactid durch Copolymerisation mit anderen Thermoplasten}, address = {Potsdam}, pages = {89 S.}, year = {2012}, language = {de} } @phdthesis{Bettenbuehl2012, author = {Bettenb{\"u}hl, Mario}, title = {Microsaccades: symbols in fixational eye movements}, address = {Potsdam}, pages = {117 S.}, year = {2012}, language = {en} } @phdthesis{RojasCarillo2012, author = {Rojas Carillo, Oscar Mario}, title = {Versatile uses of halogen-free Ionic Liquids for the formulation of non-aqueous microemulsion and synthesis of gold nanoparticles}, address = {Potsdam}, pages = {93, XXVI S.}, year = {2012}, language = {en} } @phdthesis{Kuke2012, author = {Kuke, Stefanie}, title = {Lanthanoide(III) in Komplexen mit niedermolekularen S{\"a}uren : Spektroskopische Betrachtung kompexer- spezifischer L{\"o}schmechanis,men in Eu(III)- und TB(III)-Komplexen}, address = {Potsdam}, pages = {105 S.}, year = {2012}, language = {de} } @phdthesis{Steinbrueck2012, author = {Steinbr{\"u}ck, D{\"o}rte}, title = {Faseroptische Sauerstoff- und ph-Sensorik mittels Phasenmodulationsspektroskopie}, address = {Potsdam}, pages = {92, XXIII S.}, year = {2012}, language = {de} } @phdthesis{Hahn2012, author = {Hahn, Simone}, title = {Extration von Hexachloroplatinat(IV) mit phoshorylierten Merrifield-Harzen aus salzsauren L{\"o}sungen}, address = {Potsdam}, pages = {X, 127, XXX S.}, year = {2012}, language = {de} }