@misc{PanzerBenderGronau2023, author = {Panzer, Marcel and Bender, Benedict and Gronau, Norbert}, title = {A deep reinforcement learning based hyper-heuristic for modular production control}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, issn = {1867-5808}, doi = {10.25932/publishup-60564}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-605642}, pages = {24}, year = {2023}, abstract = {In nowadays production, fluctuations in demand, shortening product life-cycles, and highly configurable products require an adaptive and robust control approach to maintain competitiveness. This approach must not only optimise desired production objectives but also cope with unforeseen machine failures, rush orders, and changes in short-term demand. Previous control approaches were often implemented using a single operations layer and a standalone deep learning approach, which may not adequately address the complex organisational demands of modern manufacturing systems. To address this challenge, we propose a hyper-heuristics control model within a semi-heterarchical production system, in which multiple manufacturing and distribution agents are spread across pre-defined modules. The agents employ a deep reinforcement learning algorithm to learn a policy for selecting low-level heuristics in a situation-specific manner, thereby leveraging system performance and adaptability. We tested our approach in simulation and transferred it to a hybrid production environment. By that, we were able to demonstrate its multi-objective optimisation capabilities compared to conventional approaches in terms of mean throughput time, tardiness, and processing of prioritised orders in a multi-layered production system. The modular design is promising in reducing the overall system complexity and facilitates a quick and seamless integration into other scenarios.}, language = {en} } @article{PanzerBenderGronau2023, author = {Panzer, Marcel and Bender, Benedict and Gronau, Norbert}, title = {A deep reinforcement learning based hyper-heuristic for modular production control}, series = {International journal of production research}, journal = {International journal of production research}, publisher = {Taylor \& Francis}, address = {London}, issn = {0020-7543}, doi = {10.1080/00207543.2023.2233641}, pages = {1 -- 22}, year = {2023}, abstract = {In nowadays production, fluctuations in demand, shortening product life-cycles, and highly configurable products require an adaptive and robust control approach to maintain competitiveness. This approach must not only optimise desired production objectives but also cope with unforeseen machine failures, rush orders, and changes in short-term demand. Previous control approaches were often implemented using a single operations layer and a standalone deep learning approach, which may not adequately address the complex organisational demands of modern manufacturing systems. To address this challenge, we propose a hyper-heuristics control model within a semi-heterarchical production system, in which multiple manufacturing and distribution agents are spread across pre-defined modules. The agents employ a deep reinforcement learning algorithm to learn a policy for selecting low-level heuristics in a situation-specific manner, thereby leveraging system performance and adaptability. We tested our approach in simulation and transferred it to a hybrid production environment. By that, we were able to demonstrate its multi-objective optimisation capabilities compared to conventional approaches in terms of mean throughput time, tardiness, and processing of prioritised orders in a multi-layered production system. The modular design is promising in reducing the overall system complexity and facilitates a quick and seamless integration into other scenarios.}, language = {en} } @article{KrestelChikkamathHeweletal.2021, author = {Krestel, Ralf and Chikkamath, Renukswamy and Hewel, Christoph and Risch, Julian}, title = {A survey on deep learning for patent analysis}, series = {World patent information}, volume = {65}, journal = {World patent information}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0172-2190}, doi = {10.1016/j.wpi.2021.102035}, pages = {13}, year = {2021}, abstract = {Patent document collections are an immense source of knowledge for research and innovation communities worldwide. The rapid growth of the number of patent documents poses an enormous challenge for retrieving and analyzing information from this source in an effective manner. Based on deep learning methods for natural language processing, novel approaches have been developed in the field of patent analysis. The goal of these approaches is to reduce costs by automating tasks that previously only domain experts could solve. In this article, we provide a comprehensive survey of the application of deep learning for patent analysis. We summarize the state-of-the-art techniques and describe how they are applied to various tasks in the patent domain. In a detailed discussion, we categorize 40 papers based on the dataset, the representation, and the deep learning architecture that were used, as well as the patent analysis task that was targeted. With our survey, we aim to foster future research at the intersection of patent analysis and deep learning and we conclude by listing promising paths for future work.}, language = {en} } @article{EvsevleevPaciornikBruno2020, author = {Evsevleev, Sergei and Paciornik, Sidnei and Bruno, Giovanni}, title = {Advanced deep learning-based 3D microstructural characterization of multiphase metal matrix composites}, series = {Advanced engineering materials}, volume = {22}, journal = {Advanced engineering materials}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1438-1656}, doi = {10.1002/adem.201901197}, pages = {6}, year = {2020}, abstract = {The quantitative analysis of microstructural features is a key to understanding the micromechanical behavior of metal matrix composites (MMCs), which is a premise for their use in practice. Herein, a 3D microstructural characterization of a five-phase MMC is performed by synchrotron X-ray computed tomography (SXCT). A workflow for advanced deep learning-based segmentation of all individual phases in SXCT data is shown using a fully convolutional neural network with U-net architecture. High segmentation accuracy is achieved with a small amount of training data. This enables extracting unprecedently precise microstructural parameters (e.g., volume fractions and particle shapes) to be input, e.g., in micromechanical models.}, language = {en} } @phdthesis{Ayzel2021, author = {Ayzel, Georgy}, title = {Advancing radar-based precipitation nowcasting}, doi = {10.25932/publishup-50426}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-504267}, school = {Universit{\"a}t Potsdam}, pages = {xx, 68}, year = {2021}, abstract = {Precipitation forecasting has an important place in everyday life - during the day we may have tens of small talks discussing the likelihood that it will rain this evening or weekend. Should you take an umbrella for a walk? Or should you invite your friends for a barbecue? It will certainly depend on what your weather application shows. While for years people were guided by the precipitation forecasts issued for a particular region or city several times a day, the widespread availability of weather radars allowed us to obtain forecasts at much higher spatiotemporal resolution of minutes in time and hundreds of meters in space. Hence, radar-based precipitation nowcasting, that is, very-short-range forecasting (typically up to 1-3 h), has become an essential technique, also in various professional application contexts, e.g., early warning, sewage control, or agriculture. There are two major components comprising a system for precipitation nowcasting: radar-based precipitation estimates, and models to extrapolate that precipitation to the imminent future. While acknowledging the fundamental importance of radar-based precipitation retrieval for precipitation nowcasts, this thesis focuses only on the model development: the establishment of open and competitive benchmark models, the investigation of the potential of deep learning, and the development of procedures for nowcast errors diagnosis and isolation that can guide model development. The present landscape of computational models for precipitation nowcasting still struggles with the availability of open software implementations that could serve as benchmarks for measuring progress. Focusing on this gap, we have developed and extensively benchmarked a stack of models based on different optical flow algorithms for the tracking step and a set of parsimonious extrapolation procedures based on image warping and advection. We demonstrate that these models provide skillful predictions comparable with or even superior to state-of-the-art operational software. We distribute the corresponding set of models as a software library, rainymotion, which is written in the Python programming language and openly available at GitHub (https://github.com/hydrogo/rainymotion). That way, the library acts as a tool for providing fast, open, and transparent solutions that could serve as a benchmark for further model development and hypothesis testing. One of the promising directions for model development is to challenge the potential of deep learning - a subfield of machine learning that refers to artificial neural networks with deep architectures, which may consist of many computational layers. Deep learning showed promising results in many fields of computer science, such as image and speech recognition, or natural language processing, where it started to dramatically outperform reference methods. The high benefit of using "big data" for training is among the main reasons for that. Hence, the emerging interest in deep learning in atmospheric sciences is also caused and concerted with the increasing availability of data - both observational and model-based. The large archives of weather radar data provide a solid basis for investigation of deep learning potential in precipitation nowcasting: one year of national 5-min composites for Germany comprises around 85 billion data points. To this aim, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting. RainNet was trained to predict continuous precipitation intensities at a lead time of 5 min, using several years of quality-controlled weather radar composites provided by the German Weather Service (DWD). That data set covers Germany with a spatial domain of 900 km x 900 km and has a resolution of 1 km in space and 5 min in time. Independent verification experiments were carried out on 11 summer precipitation events from 2016 to 2017. In these experiments, RainNet was applied recursively in order to achieve lead times of up to 1 h. In the verification experiments, trivial Eulerian persistence and a conventional model based on optical flow served as benchmarks. The latter is available in the previously developed rainymotion library. RainNet significantly outperformed the benchmark models at all lead times up to 60 min for the routine verification metrics mean absolute error (MAE) and critical success index (CSI) at intensity thresholds of 0.125, 1, and 5 mm/h. However, rainymotion turned out to be superior in predicting the exceedance of higher intensity thresholds (here 10 and 15 mm/h). The limited ability of RainNet to predict high rainfall intensities is an undesirable property which we attribute to a high level of spatial smoothing introduced by the model. At a lead time of 5 min, an analysis of power spectral density confirmed a significant loss of spectral power at length scales of 16 km and below. Obviously, RainNet had learned an optimal level of smoothing to produce a nowcast at 5 min lead time. In that sense, the loss of spectral power at small scales is informative, too, as it reflects the limits of predictability as a function of spatial scale. Beyond the lead time of 5 min, however, the increasing level of smoothing is a mere artifact - an analogue to numerical diffusion - that is not a property of RainNet itself but of its recursive application. In the context of early warning, the smoothing is particularly unfavorable since pronounced features of intense precipitation tend to get lost over longer lead times. Hence, we propose several options to address this issue in prospective research on model development for precipitation nowcasting, including an adjustment of the loss function for model training, model training for longer lead times, and the prediction of threshold exceedance. The model development together with the verification experiments for both conventional and deep learning model predictions also revealed the need to better understand the source of forecast errors. Understanding the dominant sources of error in specific situations should help in guiding further model improvement. The total error of a precipitation nowcast consists of an error in the predicted location of a precipitation feature and an error in the change of precipitation intensity over lead time. So far, verification measures did not allow to isolate the location error, making it difficult to specifically improve nowcast models with regard to location prediction. To fill this gap, we introduced a framework to directly quantify the location error. To that end, we detect and track scale-invariant precipitation features (corners) in radar images. We then consider these observed tracks as the true reference in order to evaluate the performance (or, inversely, the error) of any model that aims to predict the future location of a precipitation feature. Hence, the location error of a forecast at any lead time ahead of the forecast time corresponds to the Euclidean distance between the observed and the predicted feature location at the corresponding lead time. Based on this framework, we carried out a benchmarking case study using one year worth of weather radar composites of the DWD. We evaluated the performance of four extrapolation models, two of which are based on the linear extrapolation of corner motion; and the remaining two are based on the Dense Inverse Search (DIS) method: motion vectors obtained from DIS are used to predict feature locations by linear and Semi-Lagrangian extrapolation. For all competing models, the mean location error exceeds a distance of 5 km after 60 min, and 10 km after 110 min. At least 25\% of all forecasts exceed an error of 5 km after 50 min, and of 10 km after 90 min. Even for the best models in our experiment, at least 5 percent of the forecasts will have a location error of more than 10 km after 45 min. When we relate such errors to application scenarios that are typically suggested for precipitation nowcasting, e.g., early warning, it becomes obvious that location errors matter: the order of magnitude of these errors is about the same as the typical extent of a convective cell. Hence, the uncertainty of precipitation nowcasts at such length scales - just as a result of locational errors - can be substantial already at lead times of less than 1 h. Being able to quantify the location error should hence guide any model development that is targeted towards its minimization. To that aim, we also consider the high potential of using deep learning architectures specific to the assimilation of sequential (track) data. Last but not least, the thesis demonstrates the benefits of a general movement towards open science for model development in the field of precipitation nowcasting. All the presented models and frameworks are distributed as open repositories, thus enhancing transparency and reproducibility of the methodological approach. Furthermore, they are readily available to be used for further research studies, as well as for practical applications.}, language = {en} } @article{Ayzel2021, author = {Ayzel, Georgy}, title = {Deep neural networks in hydrology}, series = {Vestnik of Saint Petersburg University. Earth Sciences}, volume = {66}, journal = {Vestnik of Saint Petersburg University. Earth Sciences}, number = {1}, publisher = {Univ. Press}, address = {St. Petersburg}, issn = {2541-9668}, doi = {10.21638/spbu07.2021.101}, pages = {5 -- 18}, year = {2021}, abstract = {For around a decade, deep learning - the sub-field of machine learning that refers to artificial neural networks comprised of many computational layers - modifies the landscape of statistical model development in many research areas, such as image classification, machine translation, and speech recognition. Geoscientific disciplines in general and the field of hydrology in particular, also do not stand aside from this movement. Recently, the proliferation of modern deep learning-based techniques and methods has been actively gaining popularity for solving a wide range of hydrological problems: modeling and forecasting of river runoff, hydrological model parameters regionalization, assessment of available water resources. identification of the main drivers of the recent change in water balance components. This growing popularity of deep neural networks is primarily due to their high universality and efficiency. The presented qualities, together with the rapidly growing amount of accumulated environmental information, as well as increasing availability of computing facilities and resources, allow us to speak about deep neural networks as a new generation of mathematical models designed to, if not to replace existing solutions, but significantly enrich the field of geophysical processes modeling. This paper provides a brief overview of the current state of the field of development and application of deep neural networks in hydrology. Also in the following study, the qualitative long-term forecast regarding the development of deep learning technology for managing the corresponding hydrological modeling challenges is provided based on the use of "Gartner Hype Curve", which in the general details describes a life cycle of modern technologies.}, language = {en} } @phdthesis{Rezaei2019, author = {Rezaei, Mina}, title = {Deep representation learning from imbalanced medical imaging}, doi = {10.25932/publishup-44275}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442759}, school = {Universit{\"a}t Potsdam}, pages = {xxviii, 160}, year = {2019}, abstract = {Medical imaging plays an important role in disease diagnosis, treatment planning, and clinical monitoring. One of the major challenges in medical image analysis is imbalanced training data, in which the class of interest is much rarer than the other classes. Canonical machine learning algorithms suppose that the number of samples from different classes in the training dataset is roughly similar or balance. Training a machine learning model on an imbalanced dataset can introduce unique challenges to the learning problem. A model learned from imbalanced training data is biased towards the high-frequency samples. The predicted results of such networks have low sensitivity and high precision. In medical applications, the cost of misclassification of the minority class could be more than the cost of misclassification of the majority class. For example, the risk of not detecting a tumor could be much higher than referring to a healthy subject to a doctor. The current Ph.D. thesis introduces several deep learning-based approaches for handling class imbalanced problems for learning multi-task such as disease classification and semantic segmentation. At the data-level, the objective is to balance the data distribution through re-sampling the data space: we propose novel approaches to correct internal bias towards fewer frequency samples. These approaches include patient-wise batch sampling, complimentary labels, supervised and unsupervised minority oversampling using generative adversarial networks for all. On the other hand, at algorithm-level, we modify the learning algorithm to alleviate the bias towards majority classes. In this regard, we propose different generative adversarial networks for cost-sensitive learning, ensemble learning, and mutual learning to deal with highly imbalanced imaging data. We show evidence that the proposed approaches are applicable to different types of medical images of varied sizes on different applications of routine clinical tasks, such as disease classification and semantic segmentation. Our various implemented algorithms have shown outstanding results on different medical imaging challenges.}, language = {en} } @misc{Daempfling2021, type = {Master Thesis}, author = {D{\"a}mpfling, Helge Leoard Carl}, title = {DeepGeoMap}, doi = {10.25932/publishup-52057}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-520575}, school = {Universit{\"a}t Potsdam}, pages = {ii, 81}, year = {2021}, abstract = {In recent years, deep learning improved the way remote sensing data is processed. The classification of hyperspectral data is no exception. 2D or 3D convolutional neural networks have outperformed classical algorithms on hyperspectral image classification in many cases. However, geological hyperspectral image classification includes several challenges, often including spatially more complex objects than found in other disciplines of hyperspectral imaging that have more spatially similar objects (e.g., as in industrial applications, aerial urban- or farming land cover types). In geological hyperspectral image classification, classical algorithms that focus on the spectral domain still often show higher accuracy, more sensible results, or flexibility due to spatial information independence. In the framework of this thesis, inspired by classical machine learning algorithms that focus on the spectral domain like the binary feature fitting- (BFF) and the EnGeoMap algorithm, the author of this thesis proposes, develops, tests, and discusses a novel, spectrally focused, spatial information independent, deep multi-layer convolutional neural network, named 'DeepGeoMap', for hyperspectral geological data classification. More specifically, the architecture of DeepGeoMap uses a sequential series of different 1D convolutional neural networks layers and fully connected dense layers and utilizes rectified linear unit and softmax activation, 1D max and 1D global average pooling layers, additional dropout to prevent overfitting, and a categorical cross-entropy loss function with Adam gradient descent optimization. DeepGeoMap was realized using Python 3.7 and the machine and deep learning interface TensorFlow with graphical processing unit (GPU) acceleration. This 1D spectrally focused architecture allows DeepGeoMap models to be trained with hyperspectral laboratory image data of geochemically validated samples (e.g., ground truth samples for aerial or mine face images) and then use this laboratory trained model to classify other or larger scenes, similar to classical algorithms that use a spectral library of validated samples for image classification. The classification capabilities of DeepGeoMap have been tested using two geological hyperspectral image data sets. Both are geochemically validated hyperspectral data sets one based on iron ore and the other based on copper ore samples. The copper ore laboratory data set was used to train a DeepGeoMap model for the classification and analysis of a larger mine face scene within the Republic of Cyprus, where the samples originated from. Additionally, a benchmark satellite-based dataset, the Indian Pines data set, was used for training and testing. The classification accuracy of DeepGeoMap was compared to classical algorithms and other convolutional neural networks. It was shown that DeepGeoMap could achieve higher accuracies and outperform these classical algorithms and other neural networks in the geological hyperspectral image classification test cases. The spectral focus of DeepGeoMap was found to be the most considerable advantage compared to spectral-spatial classifiers like 2D or 3D neural networks. This enables DeepGeoMap models to train data independently of different spatial entities, shapes, and/or resolutions.}, language = {en} } @phdthesis{Panzer2024, author = {Panzer, Marcel}, title = {Design of a hyper-heuristics based control framework for modular production systems}, doi = {10.25932/publishup-63300}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-633006}, school = {Universit{\"a}t Potsdam}, pages = {vi, 334}, year = {2024}, abstract = {Volatile supply and sales markets, coupled with increasing product individualization and complex production processes, present significant challenges for manufacturing companies. These must navigate and adapt to ever-shifting external and internal factors while ensuring robustness against process variabilities and unforeseen events. This has a pronounced impact on production control, which serves as the operational intersection between production planning and the shop- floor resources, and necessitates the capability to manage intricate process interdependencies effectively. Considering the increasing dynamics and product diversification, alongside the need to maintain constant production performances, the implementation of innovative control strategies becomes crucial. In recent years, the integration of Industry 4.0 technologies and machine learning methods has gained prominence in addressing emerging challenges in production applications. Within this context, this cumulative thesis analyzes deep learning based production systems based on five publications. Particular attention is paid to the applications of deep reinforcement learning, aiming to explore its potential in dynamic control contexts. Analysis reveal that deep reinforcement learning excels in various applications, especially in dynamic production control tasks. Its efficacy can be attributed to its interactive learning and real-time operational model. However, despite its evident utility, there are notable structural, organizational, and algorithmic gaps in the prevailing research. A predominant portion of deep reinforcement learning based approaches is limited to specific job shop scenarios and often overlooks the potential synergies in combined resources. Furthermore, it highlights the rare implementation of multi-agent systems and semi-heterarchical systems in practical settings. A notable gap remains in the integration of deep reinforcement learning into a hyper-heuristic. To bridge these research gaps, this thesis introduces a deep reinforcement learning based hyper- heuristic for the control of modular production systems, developed in accordance with the design science research methodology. Implemented within a semi-heterarchical multi-agent framework, this approach achieves a threefold reduction in control and optimisation complexity while ensuring high scalability, adaptability, and robustness of the system. In comparative benchmarks, this control methodology outperforms rule-based heuristics, reducing throughput times and tardiness, and effectively incorporates customer and order-centric metrics. The control artifact facilitates a rapid scenario generation, motivating for further research efforts and bridging the gap to real-world applications. The overarching goal is to foster a synergy between theoretical insights and practical solutions, thereby enriching scientific discourse and addressing current industrial challenges.}, language = {en} } @phdthesis{Kriegerowski2019, author = {Kriegerowski, Marius}, title = {Development of waveform-based, automatic analysis tools for the spatio-temporal characterization of massive earthquake clusters and swarms}, doi = {10.25932/publishup-44404}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-444040}, school = {Universit{\"a}t Potsdam}, pages = {xv, 83}, year = {2019}, abstract = {Earthquake swarms are characterized by large numbers of events occurring in a short period of time within a confined source volume and without significant mainshock aftershock pattern as opposed to tectonic sequences. Intraplate swarms in the absence of active volcanism usually occur in continental rifts as for example in the Eger Rift zone in North West Bohemia, Czech Republic. A common hypothesis links event triggering to pressurized fluids. However, the exact causal chain is often poorly understood since the underlying geotectonic processes are slow compared to tectonic sequences. The high event rate during active periods challenges standard seismological routines as these are often designed for single events and therefore costly in terms of human resources when working with phase picks or computationally costly when exploiting full waveforms. This methodological thesis develops new approaches to analyze earthquake swarm seismicity as well as the underlying seismogenic volume. It focuses on the region of North West (NW) Bohemia, a well studied, well monitored earthquake swarm region. In this work I develop and test an innovative approach to detect and locate earthquakes using deep convolutional neural networks. This technology offers great potential as it allows to efficiently process large amounts of data which becomes increasingly important given that seismological data storage grows at increasing pace. The proposed deep neural network trained on NW Bohemian earthquake swarm records is able to locate 1000 events in less than 1 second using full waveforms while approaching precision of double difference relocated catalogs. A further technological novelty is that the trained filters of the deep neural network's first layer can be repurposed to function as a pattern matching event detector without additional training on noise datasets. For further methodological development and benchmarking, I present a new toolbox to generate realistic earthquake cluster catalogs as well as synthetic full waveforms of those clusters in an automated fashion. The input is parameterized using constraints on source volume geometry, nucleation and frequency-magnitude relations. It harnesses recorded noise to produce highly realistic synthetic data for benchmarking and development. This tool is used to study and assess detection performance in terms of magnitude of completeness Mc of a full waveform detector applied to synthetic data of a hydrofracturing experiment at the Wysin site, Poland. Finally, I present and demonstrate a novel approach to overcome the masking effects of wave propagation between earthquake and stations and to determine source volume attenuation directly in the source volume where clustered earthquakes occur. The new event couple spectral ratio approach exploits high frequency spectral slopes of two events sharing the greater part of their rays. Synthetic tests based on the toolbox mentioned before show that this method is able to infer seismic wave attenuation within the source volume at high spatial resolution. Furthermore, it is independent from the distance towards a station as well as the complexity of the attenuation and velocity structure outside of the source volume of swarms. The application to recordings of the NW Bohemian earthquake swarm shows increased P phase attenuation within the source volume (Qp < 100) based on results at a station located close to the village Luby (LBC). The recordings of a station located in epicentral proximity, close to Nov{\´y} Kostel (NKC), show a relatively high complexity indicating that waves arriving at that station experience more scattering than signals recorded at other stations. The high level of complexity destabilizes the inversion. Therefore, the Q estimate at NKC is not reliable and an independent proof of the high attenuation finding given the geometrical and frequency constraints is still to be done. However, a high attenuation in the source volume of NW Bohemian swarms has been postulated before in relation to an expected, highly damaged zone bearing CO 2 at high pressure. The methods developed in the course of this thesis yield the potential to improve our understanding regarding the role of fluids and gases in intraplate event clustering.}, language = {en} }