@article{WeilbacherMonrealIberoVerhammeetal.2018, author = {Weilbacher, Peter Michael and Monreal-Ibero, Ana and Verhamme, Anne and Sandin, Christer and Steinmetz, Matthias and Kollatschny, Wolfram and Krajnovic, Davor and Kamann, Sebastian and Roth, Martin M. and Erroz-Ferrer, Santiago and Marino, Raffaella Anna and Maseda, Michael V. and Wendt, Martin and Bacon, Roland and Dreizler, Stefan and Richard, Johan and Wisotzki, Lutz}, title = {Lyman-continuum leakage as dominant source of diffuse ionized gas in the Antennae galaxy}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {611}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731669}, pages = {17}, year = {2018}, abstract = {The Antennae galaxy (NGC 4038/39) is the closest major interacting galaxy system and is therefore often studied as a merger prototype. We present the first comprehensive integral field spectroscopic dataset of this system, observed with the MUSE instrument at the ESO VLT. We cover the two regions in this system which exhibit recent star formation: the central galaxy interaction and a region near the tip of the southern tidal tail. In these fields, we detect H II regions and diffuse ionized gas to unprecedented depth. About 15\% of the ionized gas was undetected by previous observing campaigns. This newly detected faint ionized gas is visible everywhere around the central merger, and shows filamentary structure. We estimate diffuse gas fractions of about 60\% in the central field and 10\% in the southern region. We are able to show that the southern region contains a significantly different population of H II regions, showing fainter luminosities. By comparing H II region luminosities with the HST catalog of young star clusters in the central field, we estimate that there is enough Lyman-continuum leakage in the merger to explain the amount of diffuse ionized gas that we detect. We compare the Lyman-continuum escape fraction of each H II region against emission line ratios that are sensitive to the ionization parameter. While we find no systematic trend between these properties, the most extreme line ratios seem to be strong indicators of density bounded ionization. Extrapolating the Lyman-continuum escape fractions to the southern region, we conclude that simply from the comparison of the young stellar populations to the ionized gas there is no need to invoke other ionization mechanisms than Lyman-continuum leaking H II regions for the diffuse ionized gas in the Antennae.}, language = {en} } @article{MarinoCantalupoLillyetal.2018, author = {Marino, Raffaella Anna and Cantalupo, Sebastiano and Lilly, Simon J. and Gallego, Sofia G. and Straka, Lorrie A. and Borisova, Elena and Pezzulli, Gabriele and Bacon, Roland and Brinchmann, Jarle and Carollo, C. Marcella and Caruana, Joseph and Conseil, Simon and Contini, Thierry and Diener, Catrina and Finley, Hayley and Inami, Hanae and Leclercq, Floriane and Muzahid, Sowgat and Richard, Johan and Schaye, Joop and Wendt, Martin and Wisotzki, Lutz}, title = {Dark Galaxy Candidates at Redshift similar to 3.5 Detected with MUSE}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {859}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aab6aa}, pages = {22}, year = {2018}, abstract = {Recent theoretical models suggest that the early phase of galaxy formation could involve an epoch when galaxies are gas rich but inefficient at forming stars: a "dark galaxy" phase. Here, we report the results of our Multi-Unit Spectroscopic Explorer (MUSE) survey for dark galaxies fluorescently illuminated by quasars at z > 3. Compared to previous studies which are based on deep narrowband (NB) imaging, our integral field survey provides a nearly uniform sensitivity coverage over a large volume in redshift space around the quasars as well as full spectral information at each location. Thanks to these unique features, we are able to build control samples at large redshift distances from the quasars using the same data taken under the same conditions. By comparing the rest-frame equivalent width (EW0) distributions of the Ly alpha sources detected in proximity to the quasars and in control samples, we detect a clear correlation between the locations of high-EW0 objects and the quasars. This correlation is not seen in other properties, such as Ly alpha luminosities or volume overdensities, suggesting the possible fluorescent nature of at least some of these objects. Among these, we find six sources without continuum counterparts and EW0 limits larger than 240 angstrom that are the best candidates for dark galaxies in our survey at z > 3.5. The volume densities and properties, including inferred gas masses and star formation efficiencies, of these dark galaxy candidates are similar to those of previously detected candidates at z approximate to 2.4 in NB surveys. Moreover, if the most distant of these are fluorescently illuminated by the quasar, our results also provide a lower limit of t - 60 Myr on the quasar lifetime.}, language = {en} } @article{GoettgensWeilbacherRothetal.2019, author = {G{\"o}ttgens, Fabian and Weilbacher, Peter Michael and Roth, Martin M. and Dreizler, Stefan and Giesers, Benjamin and Husser, Tim-Oliver and Kamann, Sebastian and Brinchmann, Jarle and Kollatschny, Wolfram and Monreal-Ibero, Ana and Schmidt, Kasper Borello and Wendt, Martin and Wisotzki, Lutz and Bacon, Roland}, title = {Discovery of an old nova remnant in the Galactic globular cluster M 22}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {626}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935221}, pages = {6}, year = {2019}, abstract = {A nova is a cataclysmic event on the surface of a white dwarf in a binary system that increases the overall brightness by several orders of magnitude. Although binary systems with a white dwarf are expected to be overabundant in globular clusters compared with in the Galaxy, only two novae from Galactic globular clusters have been observed. We present the discovery of an emission nebula in the Galactic globular cluster M 22 (NGC 6656) in observations made with the integral-field spectrograph MUSE. We extracted the spectrum of the nebula and used the radial velocity determined from the emission lines to confirm that the nebula is part of NGC 6656. Emission-line ratios were used to determine the electron temperature and density. It is estimated to have a mass of 1-17 x 10(-5) M-circle dot. This mass and the emission-line ratios indicate that the nebula is a nova remnant. Its position coincides with the reported location of a "guest star", an ancient Chinese term for transients, observed in May 48 BCE. With this discovery, this nova may be one of the oldest confirmed extra-solar events recorded in human history.}, language = {en} } @article{SchroetterBoucheZabletal.2019, author = {Schroetter, Ilane and Bouche, Nicolas F. and Zabl, Johannes and Contini, Thierry and Wendt, Martin and Schaye, Joop and Mitchell, Peter and Muzahid, Sowgat and Marino, Raffaella Anna and Bacon, Roland and Lilly, Simon J. and Richard, Johan and Wisotzki, Lutz}, title = {MusE GAs FLOw andWind (MEGAFLOW)}, series = {Monthly notices of the Royal Astronomical Society}, volume = {490}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz2822}, pages = {4368 -- 4381}, year = {2019}, abstract = {We present results from our on-going MusE GAs FLOw and Wind (MEGAFLOW) survey, which consists of 22 quasar lines of sight, each observed with the integral field unit MUSE and the UVES spectrograph at the ESO Very Large Telescopes (VLT). The goals of this survey are to study the properties of the circumgalactic medium around z similar to 1 star-forming galaxies. The absorption-line selected survey consists of 79 strong MgII absorbers (with rest-frame equivalent width greater than or similar to 0.3 angstrom) and, currently, 86 associated galaxies within 100 projected kpc of the quasar with stellar masses (M-star) from 109 to 1011 M-circle dot. We find that the cool halo gas traced by MgII is not isotropically distributed around these galaxies from the strong bi-modal distribution in the azimuthal angle of the apparent location of the quasar with respect to the galaxy major axis. This supports a scenario in which outflows are bi-conical in nature and co-exist with a co-planar gaseous structure extending at least up to 60-80 kpc. Assuming that absorbers near the minor axis probe outflows, the current MEGAFLOW sample allowed us to select 26 galaxy-quasar pairs suitable for studying winds. From this sample, using a simple geometrical model, we find that the outflow velocity only exceeds the escape velocity when M-star less than or similar to 4 x 10(9) M-circle dot, implying the cool material is likely to fall back except in the smallest haloes. Finally, we find that the mass loading factor., the ratio between the ejected mass rate and the star formation rate, appears to be roughly constant with respect to the galaxy mass.}, language = {en} } @article{FinleyBoucheContinietal.2017, author = {Finley, Hayley and Bouche, Nicolas and Contini, Thierry and Epinat, Benoit and Bacon, Roland and Brinchmann, Jarle and Cantalupo, Sebastiano and Erroz-Ferrer, Santiago and Marino, Aella Anna and Maseda, Michael and Richard, Johan and Schroetter, Ilane and Verhamme, Anne and Weilbacher, Peter Michael and Wendt, Martin and Wisotzki, Lutz}, title = {Galactic winds with MUSE: A direct detection of Fe II* emission from a z=1.29 galaxy}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {605}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201730428}, pages = {15}, year = {2017}, abstract = {Emission signatures from galactic winds provide an opportunity to directly map the outflowing gas, but this is traditionally challenging because of the low surface brightness. Using very deep observations (27 h) of the Hubble Deep Field South with the Multi Unit Spectroscopic Explorer (MUSE) instrument, we identify signatures of an outflow in both emission and absorption from a spatially resolved galaxy at z = 1.29 with a stellar mass M-star = 8 x 10(9) M-circle dot, star formation rate SFR = 77(-25)(+40) M-circle dot yr(-1), and star formation rate surface brightness Sigma(SFR) = 1.6 M-circle dot kpc(-2) within the [OII] lambda lambda 3727, 3729 half-light radius R-1/2, ([OII]) = 2.76 +/- 0.17 kpc. From a component of the strong resonant Mg II and Fe II absorptions at -350 km s(-1), we infer a mass outflow rate that is comparable to the star formation rate. We detect non-resonant Fe II* emission, at lambda 2365, lambda 2396, lambda 2612, and lambda 2626, at 1.2-2.4-1.5-2.7 x 10-(18) erg s(-1) cm(-2) respectively. The flux ratios are consistent with the expectations for optically thick gas. By combining the four non-resonant Fe II* emission lines, we spatially map the Fe II* emission from an individual galaxy for the first time. The Fe II* emission has an elliptical morphology that is roughly aligned with the galaxy minor kinematic axis, and its integrated half-light radius, R-1/2, (Fe II*) = 4.1 +/- 0.4 kpc, is 70\% larger than the stellar continuum (R-1/2,(star) similar or equal to 2.34 +/- 0.17) or the [O II] nebular line. Moreover, the Fe II* emission shows a blue wing extending up to -400 km s(-1), which is more pronounced along the galaxy minor kinematic axis and reveals a C-shaped pattern in a p - v diagram along that axis. These features are consistent with a bi-conical outflow.}, language = {en} } @article{WisotzkiBaconBlaizotetal.2016, author = {Wisotzki, Lutz and Bacon, Roland and Blaizot, J. and Brinchmann, Jarle and Herenz, Edmund Christian and Schaye, Joop and Bouche, Nicolas and Cantalupo, Sebastiano and Contini, Thierry and Carollo, C. M. and Caruana, Joseph and Courbot, J. -B. and Emsellem, E. and Kamann, S. and Kerutt, Josephine Victoria and Leclercq, F. and Lilly, S. J. and Patricio, V. and Sandin, C. and Steinmetz, Matthias and Straka, Lorrie A. and Urrutia, Tanya and Verhamme, A. and Weilbacher, Peter Michael and Wendt, Martin}, title = {Extended Lyman alpha haloes around individual high-redshift galaxies revealed by MUSE}, series = {Science}, volume = {587}, journal = {Science}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527384}, pages = {27}, year = {2016}, abstract = {We report the detection of extended Ly alpha emission around individual star-forming galaxies at redshifts z = 3-6 in an ultradeep exposure of the Hubble Deep Field South obtained with MUSE on the ESO-VLT. The data reach a limiting surface brightness (1 sigma) of similar to 1 x 10(-19) erg s(-1) cm(-2) arcsec(-2) in azimuthally averaged radial profiles, an order of magnitude improvement over previous narrowband imaging. Our sample consists of 26 spectroscopically confirmed Ly alpha-emitting, but mostly continuum-faint (m(AB) greater than or similar to 27) galaxies. In most objects the Ly alpha emission is considerably more extended than the UV continuum light. While five of the faintest galaxies in the sample show no significantly detected Ly alpha haloes, the derived upper limits suggest that this is due to insufficient S/N. Ly alpha haloes therefore appear to be ubiquitous even for low-mass (similar to 10(8)-10(9) M-circle dot) star-forming galaxies at z > 3. We decompose the Ly alpha emission of each object into a compact component tracing the UV continuum and an extended halo component, and infer sizes and luminosities of the haloes. The extended Ly alpha emission approximately follows an exponential surface brightness distribution with a scale length of a few kpc. While these haloes are thus quite modest in terms of their absolute sizes, they are larger by a factor of 5-15 than the corresponding rest-frame UV continuum sources as seen by HST. They are also much more extended, by a factor similar to 5, than Ly alpha haloes around low-redshift star-forming galaxies. Between similar to 40\% and greater than or similar to 90\% of the observed Ly alpha flux comes from the extended halo component, with no obvious correlation of this fraction with either the absolute or the relative size of the Ly alpha halo. Our observations provide direct insights into the spatial distribution of at least partly neutral gas residing in the circumgalactic medium of low to intermediate mass galaxies at z > 3.}, language = {en} } @article{BoucheFinleySchroetteretal.2016, author = {Bouche, Nicolas and Finley, H. and Schroetter, I. and Murphy, M. T. and Richter, Philipp and Bacon, Roland and Contini, Thierry and Richard, J. and Wendt, Martin and Kamann, S. and Epinat, Benoit and Cantalupo, Sebastiano and Straka, Lorrie A. and Schaye, Joop and Martin, C. L. and Peroux, C. and Wisotzki, Lutz and Soto, K. and Lilly, S. and Carollo, C. M. and Brinchmann, Jarle and Kollatschny, W.}, title = {POSSIBLE SIGNATURES OF A COLD-FLOW DISK FROM MUSE USING A z similar to 1 GALAXY-QUASAR PAIR TOWARD SDSS J1422-0001}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {820}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/0004-637X/820/2/121}, pages = {1872 -- 1882}, year = {2016}, abstract = {We use a background quasar to detect the presence of circumgalactic gas around a z = 0.91 low-mass star-forming galaxy. Data from the new Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope show that the galaxy has a dust-corrected star formation rate (SFR) of 4.7 +/- 2.0. M-circle dot yr(-1), with no companion down to 0.22 M-circle dot yr(-1) (5 sigma) within 240 h(-1) kpc ("30"). Using a high-resolution spectrum of the background quasar, which is fortuitously aligned with the galaxy major axis (with an azimuth angle alpha of only 15 degrees), we find, in the gas kinematics traced by low-ionization lines, distinct signatures consistent with those expected for a "cold-flow disk" extending at least 12 kpc (3 x R-1/2). We estimate the mass accretion rate M-in to be at least two to three times larger than the SFR, using the geometric constraints from the IFU data and the H (I) column density of log N-H (I)/cm(-2) similar or equal to 20.4 obtained from a Hubble Space Telescope/COS near-UV spectrum. From a detailed analysis of the low-ionization lines (e.g., Zn II, Cr II, Ti II, MnII, Si II), the accreting material appears to be enriched to about 0.4 Z(circle dot) (albeit with large uncertainties: log Z/Z(circle dot) = -0.4 +/- 0.4), which is comparable to the galaxy metallicity (12 + log O/H = 8.7 +/- 0.2), implying a large recycling fraction from past outflows. Blueshifted Mg II and Fe II absorptions in the galaxy spectrum from the MUSE data reveal the presence of an outflow. The Mg II and Fe II absorption line ratios indicate emission infilling due to scattering processes, but the MUSE data do not show any signs of fluorescent Fe II* emission.}, language = {en} } @article{KamannHusserBrinchmannetal.2016, author = {Kamann, S. and Husser, T. -O. and Brinchmann, Jarle and Emsellem, E. and Weilbacher, Peter Michael and Wisotzki, Lutz and Wendt, Martin and Krajnovic, D. and Roth, M. M. and Bacon, Roland and Dreizler, S.}, title = {MUSE crowded field 3D spectroscopy of over 12 000 stars in the globular cluster NGC 6397}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {588}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527065}, pages = {12}, year = {2016}, abstract = {We present a detailed analysis of the kinematics of the Galactic globular cluster NGC 6397 based on more than similar to 18 000 spectra obtained with the novel integral field spectrograph MUSE. While NGC 6397 is often considered a core collapse cluster, our analysis suggests a flattening of the surface brightness profile at the smallest radii. Although it is among the nearest globular clusters, the low velocity dispersion of NGC 6397 of < 5 km s(-1) imposes heavy demands on the quality of the kinematical data. We show that despite its limited spectral resolution, MUSE reaches an accuracy of 1 km s(-1) in the analysis of stellar spectra. We find slight evidence for a rotational component in the cluster and the velocity dispersion profile that we obtain shows a mild central cusp. To investigate the nature of this feature, we calculate spherical Jeans models and compare these models to our kinematical data. This comparison shows that if a constant mass-to-light ratio is assumed, the addition of an intermediate-mass black hole with a mass of 600 M-circle dot brings the model predictions into agreement with our data, and therefore could be at the origin of the velocity dispersion profile. We further investigate cases with varying mass-to-light ratios and find that a compact dark stellar component can also explain our observations. However, such a component would closely resemble the black hole from the constant mass-to-light ratio models as this component must be confined to the central similar to 5 ' of the cluster and must have a similar mass. Independent constraints on the distribution of stellar remnants in the cluster or kinematic measurements at the highest possible spatial resolution should be able to distinguish the two alternatives.}, language = {en} } @article{HusserKamannDreizleretal.2016, author = {Husser, Tim-Oliver and Kamann, Sebastian and Dreizler, Stefan and Wendt, Martin and Wulff, Nina and Bacon, Roland and Wisotzki, Lutz and Brinchmann, Jarle and Weilbacher, Peter Michael and Roth, Martin M. and Monreal-Ibero, Ana}, title = {MUSE crowded field 3D spectroscopy of over 12 000 stars in the globular cluster NGC 6397 I. The first comprehensive HRD of a globular cluster}, series = {Nucleic acids research}, volume = {588}, journal = {Nucleic acids research}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201526949}, pages = {14}, year = {2016}, abstract = {Aims. We demonstrate the high multiplex advantage of crowded field 3D spectroscopy with the new integral field spectrograph MUSE by means of a spectroscopic analysis of more than 12 000 individual stars in the globular cluster NGC 6397. Methods. The stars are deblended with a point spread function fitting technique, using a photometric reference catalogue from HST as prior, including relative positions and brightnesses. This catalogue is also used for a first analysis of the extracted spectra, followed by an automatic in-depth analysis via a full-spectrum fitting method based on a large grid of PHOENIX spectra. Results. We analysed the largest sample so far available for a single globular cluster of 18 932 spectra from 12 307 stars in NGC 6397. We derived a mean radial velocity of v(rad) = 17.84 +/- 0.07 km s(-1) and a mean metallicity of [Fe/H] = -2.120 +/- 0.002, with the latter seemingly varying with temperature for stars on the red giant branch (RGB). We determine Teff and [Fe/H] from the spectra, and log g from HST photometry. This is the first very comprehensive Hertzsprung-Russell diagram (HRD) for a globular cluster based on the analysis of several thousands of stellar spectra, ranging from the main sequence to the tip of the RGB. Furthermore, two interesting objects were identified; one is a post-AGB star and the other is a possible millisecond-pulsar companion.}, language = {en} } @article{SchroetterBoucheWendtetal.2016, author = {Schroetter, I. and Bouche, Nicolas and Wendt, Martin and Contini, Thierry and Finley, H. and Pello, R. and Bacon, Roland and Cantalupo, Sebastiano and Marino, Raffaella Anna and Richard, J. and Lilly, S. J. and Schaye, Joop and Soto, K. and Steinmetz, Matthias and Straka, Lorrie A. and Wisotzki, Lutz}, title = {MUSE GAS FLOW AND WIND (MEGAFLOW). I. FIRST MUSE RESULTS ON BACKGROUND QUASARS}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {833}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/833/1/39}, pages = {17}, year = {2016}, abstract = {The physical properties of galactic winds are one of the keys to understand galaxy formation and evolution. These properties can be constrained thanks to background quasar lines of sight (LOS) passing near star-forming galaxies (SFGs). We present the first results of the MusE GAs FLOw and Wind survey obtained from two quasar fields, which have eight Mg II absorbers of which three have rest equivalent width greater than 0.8 angstrom. With the new Multi Unit Spectroscopic Explorer (MUSE) spectrograph on the Very Large Telescope (VLT), we detect six (75\%) Mg II host galaxy candidates within a radius of 30. from the quasar LOS. Out of these six galaxy-quasar pairs, from geometrical argument, one is likely probing galactic outflows, where two are classified as "ambiguous,"two are likely probing extended gaseous disks and one pair seems to be a merger. We focus on the wind-pair and constrain the outflow using a high-resolution quasar spectra from the Ultraviolet and Visual Echelle Spectrograph. Assuming the metal absorption to be due to ga;s flowing out of the detected galaxy through a cone along the minor axis, we find outflow velocities in the order of approximate to 150 km s(-1) (i.e., smaller than the escape velocity) with a loading factor, eta = M-out/SFR, of approximate to 0.7. We see evidence for an open conical flow, with a low-density inner core. In the future, MUSE will provide us with about 80 multiple galaxy-quasar pairs in two dozen fields.}, language = {en} }