@article{IjiriInagakiKuboetal.2018, author = {Ijiri, Akira and Inagaki, Fumio and Kubo, Yusuke and Adhikari, Rishi Ram and Hattori, Shohei and Hoshino, Tatsuhiko and Imachi, Hiroyuki and Kawagucci, Shinsuke and Morono, Yuki and Ohtomo, Yoko and Ono, Shuhei and Sakai, Sanae and Takai, Ken and Toki, Tomohiro and Wang, David T. and Yoshinaga, Marcos Y. and Arnold, Gail L. and Ashi, Juichiro and Case, David H. and Feseker, Tomas and Hinrichs, Kai-Uwe and Ikegawa, Yojiro and Ikehara, Minoru and Kallmeyer, Jens and Kumagai, Hidenori and Lever, Mark Alexander and Morita, Sumito and Nakamura, Ko-ichi and Nakamura, Yuki and Nishizawa, Manabu and Orphan, Victoria J. and Roy, Hans and Schmidt, Frauke and Tani, Atsushi and Tanikawa, Wataru and Terada, Takeshi and Tomaru, Hitoshi and Tsuji, Takeshi and Tsunogai, Urumu and Yamaguchi, Yasuhiko T. and Yoshida, Naohiro}, title = {Deep-biosphere methane production stimulated by geofluids in the Nankai accretionary complex}, series = {Science Advances}, volume = {4}, journal = {Science Advances}, number = {6}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aao4631}, pages = {15}, year = {2018}, language = {en} } @article{AdhikariGlombitzaNickeletal.2016, author = {Adhikari, Rishi Ram and Glombitza, Clemens and Nickel, Julia C. and Anderson, Chloe H. and Dunlea, Ann G. and Spivack, Arthur J. and Murray, Richard W. and Kallmeyer, Jens}, title = {Hydrogen Utilization Potential in Subsurface Sediments}, series = {Frontiers in microbiology}, volume = {7}, journal = {Frontiers in microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2016.00008}, pages = {16}, year = {2016}, abstract = {Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H(2)ases to successively higher concentrations of H-2 in successively deeper zones.}, language = {en} } @misc{IjiriInagakiKuboetal.2018, author = {Ijiri, Akira and Inagaki, Fumio and Kubo, Yusuke and Adhikari, Rishi Ram and Hattori, Shohei and Hoshino, Tatsuhiko and Imachi, Hiroyuki and Kawagucci, Shinsuke and Morono, Yuki and Ohtomo, Yoko and Ono, Shuhei and Sakai, Sanae and Takai, Ken and Toki, Tomohiro and Wang, David T. and Yoshinaga, Marcos Y. and Arnold, Gail L. and Ashi, Juichiro and Case, David H. and Feseker, Tomas and Hinrichs, Kai-Uwe and Ikegawa, Yojiro and Ikehara, Minoru and Kallmeyer, Jens and Kumagai, Hidenori and Lever, Mark Alexander and Morita, Sumito and Nakamura, Ko-ichi and Nakamura, Yuki and Nishizawa, Manabu and Orphan, Victoria J. and R{\o}y, Hans and Schmidt, Frauke and Tani, Atsushi and Tanikawa, Wataru and Terada, Takeshi and Tomaru, Hitoshi and Tsuji, Takeshi and Tsunogai, Urumu and Yamaguchi, Yasuhiko T. and Yoshida, Naohiro}, title = {Deep-biosphere methane production stimulated by geofluids in the Nankai accretionary complex}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {802}, issn = {1866-8372}, doi = {10.25932/publishup-42700}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427002}, pages = {16}, year = {2018}, abstract = {Microbial life inhabiting subseafloor sediments plays an important role in Earth's carbon cycle. However, the impact of geodynamic processes on the distributions and carbon-cycling activities of subseafloor life remains poorly constrained. We explore a submarine mud volcano of the Nankai accretionary complex by drilling down to 200 m below the summit. Stable isotopic compositions of water and carbon compounds, including clumped methane isotopologues, suggest that ~90\% of methane is microbially produced at 16° to 30°C and 300 to 900 m below seafloor, corresponding to the basin bottom, where fluids in the accretionary prism are supplied via megasplay faults. Radiotracer experiments showed that relatively small microbial populations in deep mud volcano sediments (10 2 to 10 3 cells cm -3 ) include highly active hydrogenotrophic methanogens and acetogens. Our findings indicate that subduction-associated fluid migration has stimulated microbial activity in the mud reservoir and that mud volcanoes may contribute more substantially to the methane budget than previously estimated.}, language = {en} } @misc{AdhikariGlombitzaNickeletal.2016, author = {Adhikari, Rishi Ram and Glombitza, Clemens and Nickel, Julia C. and Anderson, Chloe H. and Dunlea, Ann G. and Spivack, Arthur J. and Murray, Richard W. and D'Hondt, Steven and Kallmeyer, Jens}, title = {Hydrogen utilization potential in subsurface sediments}, series = {Frontiers in microbiology}, journal = {Frontiers in microbiology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407678}, pages = {16}, year = {2016}, abstract = {Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H(2)ases to successively higher concentrations of H-2 in successively deeper zones.}, language = {en} } @article{RoyKallmeyerAdhikarietal.2012, author = {Roy, Hans and Kallmeyer, Jens and Adhikari, Rishi Ram and Pockalny, Robert and Jorgensen, Bo Barker and D'Hondt, Steven}, title = {Aerobic microbial respiration in 86-million-year-old deep-sea red clay}, series = {Science}, volume = {336}, journal = {Science}, number = {6083}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.1219424}, pages = {922 -- 925}, year = {2012}, abstract = {Microbial communities can subsist at depth in marine sediments without fresh supply of organic matter for millions of years. At threshold sedimentation rates of 1 millimeter per 1000 years, the low rates of microbial community metabolism in the North Pacific Gyre allow sediments to remain oxygenated tens of meters below the sea floor. We found that the oxygen respiration rates dropped from 10 micromoles of O-2 liter(-1) year(-1) near the sediment-water interface to 0.001 micromoles of O-2 liter(-1) year(-1) at 30-meter depth within 86 million-year-old sediment. The cell-specific respiration rate decreased with depth but stabilized at around 10(-3) femtomoles of O-2 cell(-1) day(-1) 10 meters below the seafloor. This result indicated that the community size is controlled by the rate of carbon oxidation and thereby by the low available energy flux.}, language = {en} } @article{KallmeyerPockalnyAdhikarietal.2012, author = {Kallmeyer, Jens and Pockalny, Robert and Adhikari, Rishi Ram and Smith, David C. and D'Hondt, Steven}, title = {Global distribution of microbial abundance and biomass in subseafloor sediment}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {109}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {40}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1203849109}, pages = {16213 -- 16216}, year = {2012}, abstract = {The global geographic distribution of subseafloor sedimentary microbes and the cause(s) of that distribution are largely unexplored. Here, we show that total microbial cell abundance in subseafloor sediment varies between sites by ca. five orders of magnitude. This variation is strongly correlated with mean sedimentation rate and distance from land. Based on these correlations, we estimate global subseafloor sedimentary microbial abundance to be 2.9 center dot 10(29) cells [corresponding to 4.1 petagram (Pg) C and similar to 0.6\% of Earth's total living biomass]. This estimate of subseafloor sedimentary microbial abundance is roughly equal to previous estimates of total microbial abundance in seawater and total microbial abundance in soil. It is much lower than previous estimates of subseafloor sedimentary microbial abundance. In consequence, we estimate Earth's total number of microbes and total living biomass to be, respectively, 50-78\% and 10-45\% lower than previous estimates.}, language = {en} } @article{AdhikariKallmeyer2010, author = {Adhikari, Rishi Ram and Kallmeyer, Jens}, title = {Detection and quantification of microbial activity in the subsurface}, issn = {0009-2819}, doi = {10.1016/j.chemer.2010.05.003}, year = {2010}, abstract = {The subsurface harbors a large fraction of Earth's living biomass, forming complex microbial ecosystems. Without a profound knowledge of the ongoing biologically mediated processes and their reaction to anthropogenic changes it is difficult to assess the long-term stability and feasibility of any type of geotechnical utilization, as these influence subsurface ecosystems. Despite recent advances in many areas of subsurface microbiology, the direct quantification of turnover processes is still in its infancy, mainly due to the extremely low cell abundances. We provide an overview of the currently available techniques for the quantification of microbial turnover processes and discuss their specific strengths and limitations. Most techniques employed so far have focused on specific processes, e.g. sulfate reduction or methanogenesis. Recent studies show that processes that were previously thought to exclude each other can occur simultaneously, albeit at very low rates. Without the identification of the respective processes it is impossible to quantify total microbial activity. Even in cases where all simultaneously occurring processes can be identified, the typically very low rates prevent quantification. In many cases a simple measure of total microbial activity would be a better and more robust measure than assays for several specific processes. Enzyme or molecular assays provide a more general approach as they target key metabolic compounds. Depending on the compound targeted a broader spectrum of microbial processes can be quantified. The two most promising compounds are ATP and hydrogenase, as both are ubiquitous in microbes. Technical constraints limit the applicability of currently available ATP-assays for subsurface samples. A recently developed hydrogenase radiotracer assay has the potential to become a key tool for the quantification of subsurface microbial activity.}, language = {en} } @phdthesis{Adhikari2013, author = {Adhikari, Rishi Ram}, title = {Quantification of total microbial biomass and metabolic activity in subsurface sediments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67773}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Metabolically active microbial communities are present in a wide range of subsurface environments. Techniques like enumeration of microbial cells, activity measurements with radiotracer assays and the analysis of porewater constituents are currently being used to explore the subsurface biosphere, alongside with molecular biological analyses. However, many of these techniques reach their detection limits due to low microbial activity and abundance. Direct measurements of microbial turnover not just face issues of insufficient sensitivity, they only provide information about a single specific process but in sediments many different process can occur simultaneously. Therefore, the development of a new technique to measure total microbial activity would be a major improvement. A new tritium-based hydrogenase-enzyme assay appeared to be a promising tool to quantify total living biomass, even in low activity subsurface environments. In this PhD project total microbial biomass and microbial activity was quantified in different subsurface sediments using established techniques (cell enumeration and pore water geochemistry) as well as a new tritium-based hydrogenase enzyme assay. By using a large database of our own cell enumeration data from equatorial Pacific and north Pacific sediments and published data it was shown that the global geographic distribution of subseafloor sedimentary microbes varies between sites by 5 to 6 orders of magnitude and correlates with the sedimentation rate and distance from land. Based on these correlations, global subseafloor biomass was estimated to be 4.1 petagram-C and ~0.6 \% of Earth's total living biomass, which is significantly lower than previous estimates. Despite the massive reduction in biomass the subseafloor biosphere is still an important player in global biogeochemical cycles. To understand the relationship between microbial activity, abundance and organic matter flux into the sediment an expedition to the equatorial Pacific upwelling area and the north Pacific Gyre was carried out. Oxygen respiration rates in subseafloor sediments from the north Pacific Gyre, which are deposited at sedimentation rates of 1 mm per 1000 years, showed that microbial communities could survive for millions of years without fresh supply of organic carbon. Contrary to the north Pacific Gyre oxygen was completely depleted within the upper few millimeters to centimeters in sediments of the equatorial upwelling region due to a higher supply of organic matter and higher metabolic activity. So occurrence and variability of electron acceptors over depth and sites make the subsurface a complex environment for the quantification of total microbial activity. Recent studies showed that electron acceptor processes, which were previously thought to thermodynamically exclude each other can occur simultaneously. So in many cases a simple measure of the total microbial activity would be a better and more robust solution than assays for several specific processes, for example sulfate reduction rates or methanogenesis. Enzyme or molecular assays provide a more general approach as they target key metabolic compounds. Since hydrogenase enzymes are ubiquitous in microbes, the recently developed tritium-based hydrogenase radiotracer assay is applied to quantify hydrogenase enzyme activity as a parameter of total living cell activity. Hydrogenase enzyme activity was measured in sediments from different locations (Lake Van, Barents Sea, Equatorial Pacific and Gulf of Mexico). In sediment samples that contained nitrate, we found the lowest cell specific enzyme activity around 10^(-5) nmol H_(2) cell^(-1) d^(-1). With decreasing energy yield of the electron acceptor used, cell-specific hydrogenase activity increased and maximum values of up to 1 nmol H_(2) cell^(-1) d^(-1) were found in samples with methane concentrations of >10 ppm. Although hydrogenase activity cannot be converted directly into a turnover rate of a specific process, cell-specific activity factors can be used to identify specific metabolism and to quantify the metabolically active microbial population. In another study on sediments from the Nankai Trough microbial abundance and hydrogenase activity data show that both the habitat and the activity of subseafloor sedimentary microbial communities have been impacted by seismic activities. An increase in hydrogenase activity near the fault zone revealed that the microbial community was supplied with hydrogen as an energy source and that the microbes were specialized to hydrogen metabolism.}, language = {en} }