@article{AssagraAltafimdoCarmoetal.2020, author = {Assagra, Yuri A.O. and Altafim, Ruy Alberto Pisani and do Carmo, Joao P. and Altafim, Ruy A.C. and Rychkov, Dmitry and Wirges, Werner and Gerhard, Reimund}, title = {A new route to piezo-polymer transducers: 3D printing of polypropylene ferroelectrets}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {27}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {5}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1070-9878}, doi = {10.1109/TDEI.2020.008461}, pages = {1668 -- 1674}, year = {2020}, abstract = {Here, a promising approach for producing piezo-polymer transducers in a one-step process is presented. Using 3D-printing technology and polypropylene (PP) filaments, we are able to print a two-layered film structure with regular cavities of precisely controlled size and shape. It is found that the 3D-printed samples exhibit piezoelectric coefficients up to 200 pC/N, similar to those of other PP ferroelectrets, and their temporal and thermal behavior is in good agreement with those known of PP ferroelectrets. The piezoelectric response strongly decreases for applied pressures above 20 kPa, as the pressure in the air-filled cavities strongly influences the overall elastic modulus of ferroelectrets.}, language = {en} } @article{QiuGrothWirgesetal.2018, author = {Qiu, Xunlin and Groth, Frederick and Wirges, Werner and Gerhard, Reimund}, title = {Cellular polypropylene foam films as DC voltage insulation and as piezoelectrets}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {25}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {3}, publisher = {Institut of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1070-9878}, doi = {10.1109/TDEI.2018.007192}, pages = {829 -- 834}, year = {2018}, abstract = {Polymer foams are in industrial use for several decades. More recently, non-polar polymer foams were found to be piezoelectric (so-called piezoelectrets) after internal electrical charging of the cavities. So far, few studies have been carried out on the electrical-insulation properties of polymer foams. Here, we compare the piezoelectric and the DC-voltage electrical-insulation properties of cellular polypropylene (PP) foams. Their cavity microstructure can be adjusted via inflation in high-pressure nitrogen gas in combination with a subsequent thermal treatment. While inflation is effective for improving the piezoelectricity, it is detrimental for the electrical-insulation properties. The original cellular PP foam shows a breakdown strength of approximately 230 MV/m, within the same range as that of solid PP. The breakdown strength decreases with increasing degree of inflation, and the dependence on the foam thickness follows an inverse power law with an exponent of 1.2. Nevertheless, up to a thickness of 140 mu m (3.5 times the original thickness), the breakdown strength of cellular-foam PP films is at least 7 times that of an air gap with the same thickness. In addition, the influence of high temperatures and high humidities on the piezoelectricity and the breakdown strength of cellular PP was studied. It was found that the piezoelectric d(33) coefficient decays rapidly already at 70 degrees C, while the breakdown strength slightly increases during storage at 70 or 90 degrees C. Under a relative humidity of 95\%, the breakdown strength increases with storage time, while the piezoelectric d(33) coefficient slightly decreases.}, language = {en} } @article{FloresSuarezMellingerWegeneretal.2006, author = {Flores Su{\´a}rez, Rosaura and Mellinger, Axel and Wegener, Michael and Wirges, Werner and Gerhard, Reimund and Singh, Rajeev}, title = {Thermal-pulse tomography of polarization distributions in a cylindrical geometry}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {13}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {5}, publisher = {IEEE}, address = {Piscataway}, issn = {1070-9878}, doi = {10.1109/TDEI.2006.258210}, pages = {1030 -- 1035}, year = {2006}, abstract = {Fast, three-dimensional polarization mapping in piezoelectric sensor cables was performed by means of the novel thermal-pulse tomography (TPT) technique with a lateral resolution of 200 mum. The active piezoelectric cable material (a copolymer of polyvinylidene fluoride with trifluoroethylene) was electrically poled with a point-to-cable corona discharge. A focused laser was employed to heat the opaque outer electrode, and the short-circuit current generated by the thermal pulse was used to obtain 3D polarization maps via the scale transformation method. The article describes the TPT technique as a fast non-destructive option for studying cylindrical geometries.}, language = {en} } @article{HollaenderKossackKolloscheetal.2016, author = {Holl{\"a}nder, Lars and Kossack, Wilhelm and Kollosche, Matthias and Wirges, Werner and Kremer, Friedrich and Gerhard, Reimund}, title = {Influence of the remanent polarisation on the liquid crystal alignment in composite films of ferroelectric poly(vinylidene fluoride-trifluoroethylene) and a cyanobiphenyl-based liquid crystal}, series = {Liquid crystals : an international journal of science and technology}, volume = {43}, journal = {Liquid crystals : an international journal of science and technology}, publisher = {Editions Rodopi BV}, address = {Abingdon}, issn = {0267-8292}, doi = {10.1080/02678292.2016.1185174}, pages = {1514 -- 1521}, year = {2016}, abstract = {Polymer-dispersed liquid crystals (PDLCs) of ferroelectric poly(vinylidene fluoride-trifluoroethylene) and nematic 4-cyano-4\&\#697;-n-hexylbiphenyl (6CB) or 4-cyano-4\&\#697;-n-pentylbiphenyl (5CB) were prepared to study the effect of the remanent polarisation of the polymer on the liquid crystal alignment. We measured the macroscopic alignment of the liquid crystal molecules in the thickness direction by means of Infrared Transition-Moment Orientational Analysis. Electrical poling at 100 V/µm caused an increased order parameter up to 0.15. After subsequent annealing above the nematic-to-isotropic phase-transition temperature, the order parameter was reduced to 0.02. Nevertheless, the order parameter was still higher than for non-poled film indicating a slight orientation in thickness direction. Both values are lower than those expected from model calculations. In agreement with dielectric measurements, we attribute this result to the shielding effect of mobile charge carriers within the liquid crystal inclusions.}, language = {en} } @article{QiuWirgesGerhard2016, author = {Qiu, Xunlin and Wirges, Werner and Gerhard, Reimund}, title = {Thermal poling of ferroelectrets: How does the gas temperature influence dielectric barrier discharges in cavities?}, series = {Applied physics letters}, volume = {108}, journal = {Applied physics letters}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.4954263}, pages = {1687 -- 1697}, year = {2016}, abstract = {The influence of the temperature in the gas-filled cavities on the charging process of ferroelectret film systems has been studied in hysteresis measurements. The threshold voltage and the effective polarization of the ferroelectrets were determined as functions of the charging temperature TP. With increasing TP, the threshold voltage for triggering dielectric barrier discharges in ferroelectrets decreases. Thus, increasing the temperature facilitates the charging of ferroelectrets. However, a lower threshold voltage reduces the attainable remanent polarization because back discharges occur at lower charge levels, as soon as the charging voltage is turned off. The results are discussed in view of Paschen's law for electrical breakdown, taking into account the respective gas temperature and a simplified model for ferroelectrets. Our results indicate that the thermal poling scheme widely used for conventional ferroelectrics is also useful for electrically charging ferroelectrets. Ferroelectrets (sometimes also called piezoelectrets) are relatively new members of the family of piezo-, pyro-, and ferroelectric materials.1-5 As their name indicates, ferroelectrets are space-charge electrets that show ferroic behavior. They are non-uniform electret materials or materials systems with electrically charged internal cavities. As space-charge electrets, ferroelectrets usually do not contain any molecular dipoles. However, the cavities inside the material can be turned into macroscopic dipoles through a series of micro-plasma discharges at high electric fields, so-called dielectric barrier discharges (DBDs).6-8 The gas inside the cavities is ionized when the internal electric field exceeds the threshold for electrical breakdown, generating charges of both polarities.9 The positive and negative charges travel in opposite directions, and are eventually trapped at the internal top and bottom surfaces of the cavities, respectively. After charging, the cavities may be regarded as macroscopic dipoles that can be switched by reversing the applied voltage. An electric-polarization-vs.-electric-field (P(E)) hysteresis is considered as an essential criterion for ferroelectricity. P(E)-hysteresis curves are usually characterized by the spontaneous polarization, the coercive field, and the remanent polarization. Recently, we have demonstrated P(E)-hysteresis loops on two different types of ferroelectrets, namely, cellular polypropylene ferroelectrets and tubular-channel fluoroethylene-polypropylene copolymer ferroelectrets.10,11 The P(E)-hysteresis loops not only prove the ferroic behavior of ferroelectrets, but also allow us to determine such parameters as the coercive field and the remanent polarization. It is widely accepted that Paschen breakdown is the underlying mechanism for the inception of DBDs in ferroelectrets.12-14 On this basis, the charging behavior and the resulting piezoelectricity of ferroelectrets in different gases at various pressures have been studied.15-17 Paschen's law describes the conditions for electrical breakdown in a gas at a constant temperature (usually room temperature), and it needs to be modified for gas breakdown at other temperatures. The temperature stability of the piezoelectricity in ferroelectrets after charging at elevated temperatures was investigated by several researchers.18-21 Recently, a preliminary report about the effects of the charging temperature on the hysteresis loops in ferroelectrets has been presented.22 In this letter, the influence of the gas temperature on the charging of ferroelectret systems is investigated in more detail by means of quasi-ferroelectric hysteresis-loop measurements. Teflon™ fluoroethylenepropylene (FEP) copolymer samples with tubular channels were prepared via thermal lamination as described previously.23 To this end, two FEP films with a thickness of 50 \&\#956;m each were laminated at 300 ° C around a 100 \&\#956;m thick polytetrafluoroethylene (PTFE) template (total area 35 mm × 45 mm) that contains parallel rectangular openings (area 1.5 mm × 40 mm each). After lamination, the template was removed, which results in an FEP film system with open tubular channels. The samples were metallized on both surfaces with aluminum electrodes of 20 mm diameter. P(E)-hysteresis loops were obtained with a modified Sawyer-Tower (ST) circuit.10,11 A high-voltage (HV) capacitor C1 (3 nF) and a large standard capacitor Cm (1 \&\#956;F) were connected in series with the sample. A bipolar sinusoidal voltage with a frequency of 10 mHz was applied from an HV power supply (FUG HCB 7-6500) controlled by an arbitrary-waveform generator (HP 33120a). The voltage Vout on Cm is measured by means of an electrometer (HP 3458a), and the charge flowing through the circuit is determined as Q(t)=CmVout(t) . The experiments were carried out at isothermal conditions in a Novocontrol® Quatro cryosystem. With the modified ST circuit, Q-V loops have been measured on a tubular-channel FEP ferroelectret system at different temperatures. The sample capacitance of about 34.5 pF is determined by a linear fit of the initial part of the Q-V curve recorded at 20 °C , where the voltage has been raised up from zero on a fresh sample. The hysteresis loops are obtained from the Q-V curves by subtracting the contribution that results from charging of the sample capacitance.10 Figure 1 shows the hysteresis loops of the sample at \&\#8722;100, 0, and +100 ° C, respectively. According to previous theoretical and experimental studies,24,25 the length of each of the horizontal sides of the parallelogram-like hysteresis loops is given by 2Vth where Vth is the threshold voltage. As the charging temperature decreases, the hysteresis loop becomes wider and less high, i.e., the threshold voltage increases, while the polarization at maximum voltage decreases.}, language = {en} } @article{MazurekYuGerhardetal.2016, author = {Mazurek, P. and Yu, L. and Gerhard, Reimund and Wirges, Werner and Skov, A. L.}, title = {Glycerol as high-permittivity liquid filler in dielectric silicone elastomers}, series = {Journal of applied polymer science}, volume = {133}, journal = {Journal of applied polymer science}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0021-8995}, doi = {10.1002/app.44153}, pages = {8}, year = {2016}, abstract = {A recently reported novel class of elastomers was tested with respect to its dielectric properties. The new elastomer material is based on a commercially available poly(dimethylsiloxane) composition, which has been modified by embedding glycerol droplets into its matrix. The approach has two major advantages that make the material useful in a dielectric actuator. First, the glycerol droplets efficiently enhance the dielectric constant, which can reach astonishingly high values in the composite. Second, the liquid filler also acts as a softener that effectively decreases the elastic modulus of the composite. In combination with very low cost and easy preparation, the two property enhancements lead to an extremely attractive dielectric elastomer material. Experimental permittivity data are compared to various theoretical models that predict relative permittivity changes as a function of filler loading, and the applicability of the models is discussed. (c) 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 44153.}, language = {en} } @article{SborikasQiuWirgesetal.2014, author = {Sborikas, Martynas and Qiu, Xunlin and Wirges, Werner and Gerhard, Reimund and Jenninger, Werner and Lovera, Deliani}, title = {Screen printing for producing ferroelectret systems with polymer-electret films and well-defined cavities}, series = {Applied physics : A, Materials science \& processing}, volume = {114}, journal = {Applied physics : A, Materials science \& processing}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0947-8396}, doi = {10.1007/s00339-013-7998-3}, pages = {515 -- 520}, year = {2014}, abstract = {We report a process for preparing polymer ferroelectrets by means of screen printing-a technology that is widely used for the two-dimensional patterning of printed layers. In order to produce polymer-film systems with cavities that are suitable for bipolar electric charging, a screen-printing paste is deposited through a screen with a pre-designed pattern onto the surface of a polymer electret film. Another such polymer film is placed on top of the printed pattern, and well-defined cavities are formed in-between. During heating and curing, the polymer films are tightly bonded to the patterned paste layer so that a stable three-layer system is obtained. In the present work, polycarbonate (PC) films have been employed as electret layers. Screen printing, curing and charging led to PC ferroelectret systems with a piezoelectric d (33) coefficient of about 28 pC/N that is stable up to 100 C-a similar to. Due to the rather soft patterned layer, d (33) strongly decreases already for static pressures of tens of kPa. The results demonstrate the suitability of screen printing for the preparation of ferroelectret systems.}, language = {en} } @article{QiuWirgesGerhard2014, author = {Qiu, Xunlin and Wirges, Werner and Gerhard, Reimund}, title = {Polarization and Hysteresis in Tubular-Channel Fluoroethylenepropylene-Copolymer Ferroelectrets}, series = {Ferroelectrics}, volume = {472}, journal = {Ferroelectrics}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0015-0193}, doi = {10.1080/00150193.2014.964603}, pages = {100 -- 109}, year = {2014}, abstract = {Polarization-vs.-applied-voltage hysteresis curves are recorded on tubular-channel fluoroethylene-propylene (FEP) copolymer ferroelectrets by means of a modified Sawyer-Tower circuit. Dielectric barrier discharges (DBDs) inside the cavities are triggered when the applied voltage is sufficiently high. During the DBDs, the cavities become man-made macroscopic dipoles which build up an effective polarization in the ferroelectret. Therefore, a phenomenological hysteresis curve is observed. From the hysteresis loop, the remanent polarization and the coercive field can be determined. Furthermore, the polarization can be related to the respective piezoelectric coefficient of the ferroelectret. The proposed method is easy to implement and is useful for characterization, further development and optimization of ferro- or piezoelectrets.}, language = {en} } @article{FangWangWirgesetal.2011, author = {Fang, Peng and Wang, Feipeng and Wirges, Werner and Gerhard, Reimund and Basso, Heitor Cury}, title = {Three-layer piezoelectrets from fluorinated ethylene-propylene (FEP) copolymer films}, series = {Applied physics : A, Materials science \& processing}, volume = {103}, journal = {Applied physics : A, Materials science \& processing}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0947-8396}, doi = {10.1007/s00339-010-6008-2}, pages = {455 -- 461}, year = {2011}, abstract = {A process for preparing three-layer piezoelectrets from fluorinated ethylene-propylene (FEP) copolymer films is introduced. Samples are made from commercial FEP films by means of laser cutting, laser bonding, electrode evaporation, and high-field poling. The observed dielectric-resonance spectra demonstrate the piezoelectricity of the FEP sandwiches. Piezoelectric d (33) coefficients up to a few hundred pC/N are achieved. Charging at elevated temperatures can increase the thermal stability of the piezoelectrets. Isothermal experiments for approximately 15 min demonstrate that samples charged at 140A degrees C keep their piezoelectric activity up to at least 120A degrees C and retain 70\% of their initial d (33) even at 130A degrees C. Acoustical measurements show a relatively flat frequency response in the range between 300 Hz and 20 kHz.}, language = {en} } @article{QiuWirgesGerhard2011, author = {Qiu, Xunlin and Wirges, Werner and Gerhard, Reimund}, title = {Beneficial and detrimental fatigue effects of dielectric barrier discharges on the piezoelectricity of polypropylene ferroelectrets}, series = {Journal of applied physics}, volume = {110}, journal = {Journal of applied physics}, number = {2}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-8979}, doi = {10.1063/1.3610507}, pages = {8}, year = {2011}, abstract = {Cellular polypropylene (PP) ferroelectrets combine a large piezoelectricity with mechanical flexibility and elastic compliance. Their charging process represents a series of dielectric barrier discharges (DBDs) that generate a cold plasma with numerous active species and thus modify the inner polymer surfaces of the foam cells. Both the threshold for the onset of DBDs and the piezoelectricity of ferroelectrets are sensitive to repeated DBDs in the voids. It is found that the threshold voltage is approximately halved and the charging efficiency is clearly improved after only 10(3) DBD cycles. However, plasma modification of the inner surfaces from repeated DBDs deteriorates the chargeability of the voids, leading to a significant reduction of the piezoelectricity in ferroelectrets. After a significant waiting period, the chargeability of previously fatigued voids shows a partial recovery. The plasma modification is, however, detrimental to the stability of the deposited charges and thus also of the macroscopic dipoles and of the piezoelectricity. Fatigue from only 10(3) DBD cycles already results in significantly less stable piezoelectricity in cellular PP ferroelectrets. The fatigue rate as a function of the number of voltage cycles follows a stretched exponential. Fatigue from repeated DBDs can be avoided if most of the gas molecules inside the voids are removed via a suitable evacuation process.}, language = {en} }