@article{TreydteGrantJeltsch2009, author = {Treydte, Anna C. and Grant, Rina C. C. and Jeltsch, Florian}, title = {Tree size and herbivory determine below-canopy grass quality and species composition in savannahs}, issn = {0960-3115}, doi = {10.1007/s10531-009-9694-3}, year = {2009}, abstract = {Large single-standing trees are rapidly declining in savannahs, ecosystems supporting a high diversity of large herbivorous mammals. Savannah trees are important as they support both a unique flora and fauna. The herbaceous layer in particular responds to the structural and functional properties of a tree. As shrubland expands stem thickening occurs and large trees are replaced by smaller trees. Here we examine whether small trees are as effective in providing advantages for grasses growing beneath their crowns as large trees are. The role of herbivory in this positive tree- grass interaction is also investigated. We assessed soil and grass nutrient content, structural properties, and herbaceous species composition beneath trees of three size classes and under two grazing regimes in a South African savannah. We found that grass leaf content (N and P) beneath the crowns of particularly large (ca. 3.5 m) and very large trees (ca. 9 m) was as much as 40\% greater than the same grass species not growing under a tree canopy, whereas nutrient contents of grasses did not differ beneath small trees (< 2.3 m). Moderate herbivory enhanced these effects slightly. Grass species composition differed beneath and beyond the tree canopy but not between tree size classes. As large trees significantly improve the grass nutrient quality for grazers in contrast to smaller trees, the decline of the former should be halted. The presence of trees further increases grass species diversity and patchiness by favouring shade- tolerant species. Both grazing wildlife and livestock will benefit from the presence of large trees because of their structural and functional importance for savannahs.}, language = {en} } @article{TreydteRiginosJeltsch2010, author = {Treydte, Anna C. and Riginos, Corinna and Jeltsch, Florian}, title = {Enhanced use of beneath-canopy vegetation by grazing ungulates in African savannahs}, issn = {0140-1963}, doi = {10.1016/j.jaridenv.2010.07.003}, year = {2010}, abstract = {The cover of large trees in African savannahs is rapidly declining, mainly due to human land-use practices. Trees improve grass nutrient quality and contribute to species and structural diversity of savannah vegetation. However, the response of herbivores to trees as habitat features is unknown We quantified the habitat use of wild and domestic ungulates in two eastern and southern African savannahs. We assessed grazing intensities and quantified dung depositions beneath and around canopies of different sized trees. Grasses were eaten and dung was deposited twice as frequently beneath large (ca. 5 m in height) and very large trees (7-10 m) than in open grasslands. Small trees (<2.5 m) did not show this trend. Grazing intensity and dung deposition decreased with distance away from trees at both study sites. These results suggest that large trees represent essential habitat features for domestic and wild herbivores. Increased dung depositions beneath large trees may further promote the maintenance of a patchy nutrient distribution in savannahs. Small trees cannot provide the same structural and functional advantages as large trees do. We recommend that land-use practices be promoted which conserve large single-standing trees to benefit the flora and fauna of African savannahs.}, language = {en} } @article{TreydteHeitkoenigLudwig2009, author = {Treydte, Anna C. and Heitk{\"o}nig, Ignas M. A. and Ludwig, Fulco}, title = {Modelling ungulate dependence on higher quality forage under large trees in African savannahs}, issn = {1439-1791}, doi = {10.1016/j.baae.2008.03.003}, year = {2009}, abstract = {In African savannahs, large trees improve grass quality, particularly in dry and nutrient poor areas. Enhanced below-canopy grass nutrients, such as nitrogen and phosphorus contents should therefore attract and benefit grazers. To predict whether ungulates really need these forage quality islands we focused on four grazer species, i.e., zebra, buffalo, wildebeest, and warthog, differing in body size and digestive system. We confronted literature estimations of their feeding requirements with forage availability and quality, observed in three South African savannah systems, through linear modelling. The model predicted the proportion of below-canopy grass that grazers should include in their diet to meet their nutritional requirements. During the wet season, the model predicted that all animals could satisfy their daily nutrient requirements when feeding on a combination of below- and outside-canopy grasses. However, wildebeest, having relatively high nutrient demands, could meet their nutrient requirements only by feeding almost exclusively below canopies. During the dry season, all animals could gain almost twice as much digestible protein when feeding on below - compared to outside-canopy forage. Nonetheless, only warthogs could satisfy their nutrient requirements - when feeding almost exclusively on below-canopy grasses. The other ungulate species could not meet their phosphorus demands by feeding at either site without exceeding their maximum fibre intake, indicating the unfavourable conditions during the dry season. We conclude that grazing ungulates, particularly warthog, zebra, and buffalo, actually depend on the available below-canopy grass resources. Our model therefore helps to quantify the importance of higher quality forage patches beneath savannah trees. The composition of grazer communities depending on below-canopy grasses can be anticipated if grazer food requirements and the abundance of large trees in savannahs are known. The model suggests that the conservation of large single-standing trees in savannahs is crucial for maintenance of locally grazing herbivores.}, language = {en} }