@article{MeyerEbelingEisenhaueretal.2016, author = {Meyer, Sebastian T. and Ebeling, Anne and Eisenhauer, Nico and Hertzog, Lionel and Hillebrand, Helmut and Milcu, Alexandru and Pompe, Sven and Abbas, Maike and Bessler, Holger and Buchmann, Nina and De Luca, Enrica and Engels, Christof and Fischer, Markus and Gleixner, Gerd and Hudewenz, Anika and Klein, Alexandra-Maria and de Kroon, Hans and Leimer, Sophia and Loranger, Hannah and Mommer, Liesje and Oelmann, Yvonne and Ravenek, Janneke M. and Roscher, Christiane and Rottstock, Tanja and Scherber, Christoph and Scherer-Lorenzen, Michael and Scheu, Stefan and Schmid, Bernhard and Schulze, Ernst-Detlef and Staudler, Andrea and Strecker, Tanja and Temperton, Vicky and Tscharntke, Teja and Vogel, Anja and Voigt, Winfried and Weigelt, Alexandra and Wilcke, Wolfgang and Weisser, Wolfgang W.}, title = {Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity}, series = {Ecosphere : the magazine of the International Ecology University}, volume = {7}, journal = {Ecosphere : the magazine of the International Ecology University}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2150-8925}, doi = {10.1002/ecs2.1619}, pages = {14}, year = {2016}, language = {en} } @article{AllanWeisserFischeretal.2013, author = {Allan, Eric and Weisser, Wolfgang W. and Fischer, Markus and Schulze, Ernst-Detlef and Weigelt, Alexandra and Roscher, Christiane and Baade, Jussi and Barnard, Romain L. and Bessler, Holger and Buchmann, Nina and Ebeling, Anne and Eisenhauer, Nico and Engels, Christof and Fergus, Alexander J. F. and Gleixner, Gerd and Gubsch, Marlen and Halle, Stefan and Klein, Alexandra Maria and Kertscher, Ilona and Kuu, Annely and Lange, Markus and Le Roux, Xavier and Meyer, Sebastian T. and Migunova, Varvara D. and Milcu, Alexandru and Niklaus, Pascal A. and Oelmann, Yvonne and Pasalic, Esther and Petermann, Jana S. and Poly, Franck and Rottstock, Tanja and Sabais, Alexander C. W. and Scherber, Christoph and Scherer-Lorenzen, Michael and Scheu, Stefan and Steinbeiss, Sibylle and Schwichtenberg, Guido and Temperton, Vicky and Tscharntke, Teja and Voigt, Winfried and Wilcke, Wolfgang and Wirth, Christian and Schmid, Bernhard}, title = {A comparison of the strength of biodiversity effects across multiple functions}, series = {Oecologia}, volume = {173}, journal = {Oecologia}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-012-2589-0}, pages = {223 -- 237}, year = {2013}, abstract = {In order to predict which ecosystem functions are most at risk from biodiversity loss, meta-analyses have generalised results from biodiversity experiments over different sites and ecosystem types. In contrast, comparing the strength of biodiversity effects across a large number of ecosystem processes measured in a single experiment permits more direct comparisons. Here, we present an analysis of 418 separate measures of 38 ecosystem processes. Overall, 45 \% of processes were significantly affected by plant species richness, suggesting that, while diversity affects a large number of processes not all respond to biodiversity. We therefore compared the strength of plant diversity effects between different categories of ecosystem processes, grouping processes according to the year of measurement, their biogeochemical cycle, trophic level and compartment (above- or belowground) and according to whether they were measures of biodiversity or other ecosystem processes, biotic or abiotic and static or dynamic. Overall, and for several individual processes, we found that biodiversity effects became stronger over time. Measures of the carbon cycle were also affected more strongly by plant species richness than were the measures associated with the nitrogen cycle. Further, we found greater plant species richness effects on measures of biodiversity than on other processes. The differential effects of plant diversity on the various types of ecosystem processes indicate that future research and political effort should shift from a general debate about whether biodiversity loss impairs ecosystem functions to focussing on the specific functions of interest and ways to preserve them individually or in combination.}, language = {en} } @article{HectorHautierSaneretal.2010, author = {Hector, Andy and Hautier, Yann and Saner, Philippe and Wacker, Lukas and Bagchi, Robert and Joshi, Jasmin Radha and Scherer-Lorenzen, Michael and Spehn, Eva M. and Bazeley-White, Ellen and Weilenmann, Markus and Caldeira, Maria da Concei{\c{c}}{\~a}o Br{\´a}lio de Brito and Dimitrakopoulos, Panayiotis G. and Finn, John A. and Huss-Danell, Kerstin and Jumpponen, Ari and Mulder, Christa P. H. and Palmborg, Cecilia and Pereira, J. S. and Siamantziouras, Akis S. D. and Terry, Andrew C. and Troumbis, Andreas Y. and Schmid, Bernhard and Loreau, Michel}, title = {General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding}, issn = {0012-9658}, year = {2010}, abstract = {Insurance effects of biodiversity can stabilize the functioning of multispecies ecosystems against environmental variability when differential species' responses lead to asynchronous population dynamics. When responses are not perfectly positively correlated, declines in some populations are compensated by increases in others, smoothing variability in ecosystem productivity. This variance reduction effect of biodiversity is analogous to the risk- spreading benefits of diverse investment portfolios in financial markets. We use data from the BIODEPTH network of grassland biodiversity experiments to perform a general test for stabilizing effects of plant diversity on the temporal variability of individual species, functional groups, and aggregate communities. We tested three potential mechanisms: reduction of temporal variability through population asynchrony; enhancement of long-term average performance through positive selection effects; and increases in the temporal mean due to overyielding. Our results support a stabilizing effect of diversity on the temporal variability of grassland aboveground annual net primary production through two mechanisms. Two-species communities with greater population asynchrony were more stable in their average production over time due to compensatory fluctuations. Overyielding also stabilized productivity by increasing levels of average biomass production relative to temporal variability. However, there was no evidence for a performance-enhancing effect on the temporal mean through positive selection effects. In combination with previous work, our results suggest that stabilizing effects of diversity on community productivity through population asynchrony and overyielding appear to be general in grassland ecosystems.}, language = {en} }