@article{KlopschBaldermannVossetal.2018, author = {Klopsch, Rebecca and Baldermann, Susanne and Voss, Alexander and Rohn, Sascha and Schreiner, Monika and Neugart, Susanne}, title = {Bread enriched with legume microgreens and leaves}, series = {Frontiers in chemistry}, volume = {6}, journal = {Frontiers in chemistry}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-2646}, doi = {10.3389/fchem.2018.00322}, pages = {19}, year = {2018}, abstract = {Flavonoids, carotenoids, and chlorophylls were characterized in microgreens and leaves of pea (Pisum sativum) and lupin (Lupinus angustifolius) as these metabolites change during ontogeny. All metabolites were higher in the leaves for both species. Acylated quercetin and kaempferol sophorotrioses were predominant in pea. Genistein and malonylated chrysoeriol were predominant in lupin. Further, the impact of breadmaking on these metabolites using pea and lupin material of two ontogenetic stages as an added ingredient in wheat-based bread was assessed. In "pea microgreen bread" no decrease of quercetin was found with regard to the non-processed plant material. However kaempferol glycosides showed slight decreases induced by the breadmaking process in "pea microgreen bread" and "pea leaf bread." In "lupin microgreen bread" no decrease of genistein compared to the non-processed plant material was found. Chrysoeriol glycosides showed slight decreases induced by the breadmaking process in "lupin microgreen bread" and "lupin leaf bread." In all breads, carotenoids and chlorophylls were depleted however pheophytin formation was caused. Thus, pea and lupin microgreens and leaves are suitable, natural ingredients for enhancing health-promoting secondary plant metabolites in bread and may even be used to tailor bread for specific consumer health needs.}, language = {en} } @article{SchroeterNeugartSchreineretal.2019, author = {Schr{\"o}ter, David and Neugart, Susanne and Schreiner, Monika and Grune, Tilman and Rohn, Sascha and Ott, Christiane}, title = {Amaranth's 2-Caffeoylisocitric Acid—An Anti-Inflammatory Caffeic Acid Derivative That Impairs NF-κB Signaling in LPS-Challenged RAW 264.7 Macrophages}, series = {Nutrients}, volume = {11}, journal = {Nutrients}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu11030571}, pages = {14}, year = {2019}, abstract = {For centuries, Amaranthus sp. were used as food, ornamentals, and medication. Molecular mechanisms, explaining the health beneficial properties of amaranth, are not yet understood, but have been attributed to secondary metabolites, such as phenolic compounds. One of the most abundant phenolic compounds in amaranth leaves is 2-caffeoylisocitric acid (C-IA) and regarding food occurrence, C-IA is exclusively found in various amaranth species. In the present study, the anti-inflammatory activity of C-IA, chlorogenic acid, and caffeic acid in LPS-challenged macrophages (RAW 264.7) has been investigated and cellular contents of the caffeic acid derivatives (CADs) were quantified in the cells and media. The CADs were quantified in the cell lysates in nanomolar concentrations, indicating a cellular uptake. Treatment of LPS-challenged RAW 264.7 cells with 10 µM of CADs counteracted the LPS effects and led to significantly lower mRNA and protein levels of inducible nitric oxide synthase, tumor necrosis factor alpha, and interleukin 6, by directly decreasing the translocation of the nuclear factor κB/Rel-like containing protein 65 into the nucleus. This work provides new insights into the molecular mechanisms that attribute to amaranth's anti-inflammatory properties and highlights C-IA's potential as a health-beneficial compound for future research.}, language = {en} } @article{KlopschBaldermannVossetal.2019, author = {Klopsch, Rebecca and Baldermann, Susanne and Voss, Alexander and Rohn, Sascha and Schreiner, Monika and Neugart, Susanne}, title = {Narrow-Banded UVB Affects the Stability of Secondary Plant Metabolites in Kale (Brassica oleracea var. sabellica) and Pea (Pisum sativum) Leaves Being Added to Lentil Flour Fortified Bread: A Novel Approach for Producing Functional Foods}, series = {Foods}, volume = {8}, journal = {Foods}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2304-8158}, doi = {10.3390/foods8100427}, pages = {20}, year = {2019}, abstract = {Young kale and pea leaves are rich in secondary plant metabolites (SPMs) whose profile can be affected by ultraviolet B (UVB) radiation. Carotenoids and flavonoids in kale and pea exposed to narrow-banded UVB, produced by innovative light-emitting diodes (LEDs), and subsequently used for breadmaking were investigated for the first time, thus combining two important strategies to increase the SPMs intake. Breads were also fortified with protein-rich lentil flour. Antioxidant activity in the 'vegetable breads' indicated health-promoting effects. Lentil flour increased the antioxidant activity in all of the 'vegetable breads'. While carotenoids and chlorophylls showed a minor response to UVB treatment, kaempferol glycosides decreased in favor of increasing quercetin glycosides, especially in kale. Additionally, breadmaking caused major decreases in carotenoids and a conversion of chlorophyll to bioactive degradation products. In 'kale breads' and 'pea breads', 20\% and 84\% of flavonoid glycosides were recovered. Thus, kale and pea leaves seem to be suitable natural ingredients for producing innovative Functional Foods.}, language = {en} } @article{KlopschBaldermannHanschenetal.2019, author = {Klopsch, Rebecca and Baldermann, Susanne and Hanschen, Franziska S. and Voss, Alexander and Rohn, Sascha and Schreiner, Monika and Neugart, Susanne}, title = {Brassica-enriched wheat bread: Unraveling the impact of ontogeny and breadmaking on bioactive secondary plant metabolites of pak choi and kale}, series = {Food chemistry}, volume = {295}, journal = {Food chemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0308-8146}, doi = {10.1016/j.foodchem.2019.05.113}, pages = {412 -- 422}, year = {2019}, abstract = {Consumption of Brassica vegetables is linked to health benefits, as they contain high concentrations of the following secondary plant metabolites (SPMs): glucosinolate breakdown products, carotenoids, chlorophylls, and phenolic compounds. Especially Brassica vegetables are consumed as microgreens (developed cotyledons). It was investigated how different ontogenetic stages (microgreens or leaves) of pak choi (Brassica rapa subsp. chinensis) and kale (Brassica oleracea var. sabellica) differ in their SPM concentration. The impact of breadmaking on SPMs in microgreens (7 days) and leaves (14 days) in pak choi and kale as a supplement in mixed wheat bread was assessed. In leaves, carotenoids, chlorophylls, and phenolic compounds were higher compared to those of microgreens. Breadmaking caused a decrease of SPMs. Chlorophyll degradation was observed, leading to pheophytin and pyropheophytin formation. In kale, sinapoylgentiobiose, a hydroxycinnamic acid derivative, concentration increased. Thus, leaves of Brassica species are suitable as natural ingredients for enhancing bioactive SPM concentrations in bread.}, language = {en} } @article{RohnPetzkeRaweletal.2006, author = {Rohn, Sascha and Petzke, Klaus-J{\"u}rgen and Rawel, Harshadrai Manilal and Kroll, J{\"u}rgen}, title = {Reactions of chlorogenic acid and quercetin with a soy protein isolate - Influence on the in vivo food protein quality in rats}, series = {Molecular nutrition \& food research : bioactivity, chemistry, immunology, microbiology, safety, technology}, volume = {50}, journal = {Molecular nutrition \& food research : bioactivity, chemistry, immunology, microbiology, safety, technology}, publisher = {Wiley}, address = {Weinheim}, issn = {1613-4125}, doi = {10.1002/mnfr.200600043}, pages = {696 -- 704}, year = {2006}, abstract = {Plant phenolic compounds are known to interact with proteins producing changes in the food (e.g., biological value (BV), color, taste). Therefore, the in vivo relevance, especially, of covalent phenolprotein reactions on protein quality was studied in a rat bioassay. The rats were fed protein derivatives at a 10\% protein level. Soy proteins were derivatized with chlorogenic acid and quercetin (derivatization levels: 0.056 and 0.28 mmol phenolic compound/gram protein). Analysis of nitrogen in diets, urine, and fecal samples as well as the distribution of amino acids were determined. Depending on the degree of derivatization, the rats fed with soy protein derivatives showed an increased excretion of fecal and urinary nitrogen. As a result, true nitrogen digestibility, BV, and net protein utilization were adversely affected. Protein digestibility corrected amino acid score was decreased for lysine, tryptophan, and sulfur containing amino acids.}, language = {en} } @article{ReinkensmeierSteinbrennerHomannetal.2016, author = {Reinkensmeier, Annika and Steinbrenner, Katrin and Homann, Thomas and Bussler, Sara and Rohn, Sascha and Rawel, Harshadrai Manilal}, title = {Monitoring the apple polyphenol oxidase-modulated adduct formation of phenolic and amino compounds}, series = {Food chemistry}, volume = {194}, journal = {Food chemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0308-8146}, doi = {10.1016/j.foodchem.2015.07.145}, pages = {76 -- 85}, year = {2016}, abstract = {Minimally processed fruit products such as smoothies are increasingly coming into demand. However, they are often combined with dairy ingredients. In this combination, phenolic compounds, polyphenoloxidases, and amino compounds could interact. In this work, a model approach is presented where apple serves as a source for a high polyphenoloxidase activity for modulating the reactions. The polyphenoloxidase activity ranged from 128 to 333 nakt/mL in different apple varieties. From these, 'Braeburn' was found to provide the highest enzymatic activity. The formation and stability of resulting chromogenic conjugates was investigated. The results show that such adducts are not stable and possible degradation mechanisms leading to follow-up products formed are proposed. Finally, apple extracts were used to modify proteins and their functional properties characterized. There were retaining antioxidant properties inherent to phenolic compounds after adduct formation. Consequently, such interactions may also be utilized to improve the textural quality of food products.}, language = {en} } @article{ReinkensmeierBasslerSchlueteretal.2015, author = {Reinkensmeier, Annika and Bassler, Sara and Schlueter, Oliver and Rohn, Sascha and Rawel, Harshadrai Manilal}, title = {Characterization of individual proteins in pea protein isolates and air classified samples}, series = {Food research international}, volume = {76}, journal = {Food research international}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0963-9969}, doi = {10.1016/j.foodres.2015.05.009}, pages = {160 -- 167}, year = {2015}, abstract = {Generally, pea proteins are extracted at comparatively acidic or basic pH values to provide a basis for protein isolate production. Such processing steps result in partial denaturation of the proteins rendering them in most cases insoluble at food processing pH conditions and limiting their application in food products. Here, the comparison of the solubility properties of pea proteins in protein enriched fractions deriving from air classification is reported. Protein content, solubility, and physicochemical parameters of different fractions of the pea (Pisum sativum) variety 'Salamanca' were investigated as a function of pH using SDS-PAGE and surface hydrophobicity. Whole pea flour (20\% protein), air classified, protein-enriched pea flour (48\% protein), pea flour made from hulls (2.8\% protein), and pea protein isolate (81\% protein) served as test materials. Fractionation and pH value affected the composition and surface hydrophobicity of the proteins as well as the content of trypsin inhibitors. All samples showed a high buffering capacity in the range of pH 4 to 10. The direct comparison documents the comparatively better protein quality of the air classified, protein enriched pea fraction. The solubility of the pea protein isolate can be improved by using selected additives, giving new possibilities for plant protein application. Relevant technofunctional properties were determined and compared with two commercially available pea-based products (whole pea flour and an isolate). Water binding capacity was highest for the commercially available pea flour followed by the pea hull flour. Fat binding capacity remained more or less unchanged. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{RailaRohnSchweigertetal.2011, author = {Raila, Jens and Rohn, Sascha and Schweigert, Florian J. and Abraham, Getu}, title = {Increased antioxidant capacity in the plasma of dogs after a single oral dosage of tocotrienols}, series = {The British journal of nutrition : an international journal devoted to the science of human and animal nutrition}, volume = {106}, journal = {The British journal of nutrition : an international journal devoted to the science of human and animal nutrition}, number = {7}, publisher = {Cambridge Univ. Press}, address = {Cambridge}, issn = {0007-1145}, doi = {10.1017/S0007114511000511}, pages = {S116 -- S119}, year = {2011}, abstract = {The intestinal absorption of tocotrienols (TCT) in dogs is, to our knowledge, so far unknown. Adult Beagle dogs (n 8) were administered a single oral dosage of a TCT-rich fraction (TRF; 40 mg/kg body weight) containing 32\% alpha-TCT, 2\% beta-TCT, 27\% gamma-TCT, 14\% delta-TCT and 25\% alpha-tocopherol (alpha-TCP). Blood was sampled at baseline (fasted), 1, 2, 3, 4, 5, 6, 8 and 12 h after supplementation. Plasma and chylomicron concentrations of TCT and alpha-TCP were measured at each time point. Plasma TAG were measured enzymatically, and plasma antioxidant capacity was assessed by the Trolox equivalent antioxidant capacity assay. In fasted dogs, levels of TCT were 0.07 (SD 0.03) mu mol/l. Following the administration of the TRF, total plasma TCT peaked at 2 h (7.16 (SD 3.88) mu mol/l; P<0.01) and remained above baseline levels (0.67 (SD 0.44) mu mol/l; P, 0.01) at 12 h. The TCT response in chylomicrons paralleled the increase in TCT in plasma with a maximum peak (3.49 (SD 2.06) mu mol/l; P, 0.01) at 2 h post-dosage. alpha-TCP was the major vitamin E detected in plasma and unaffected by TRF supplementation. The Trolox equivalent values increased from 2 h (776 (SD 51.2) mu mol/l) to a maximum at 12 h (1130 (SD 7.72) mmol/l; P<0.01). The results show that TCT are detected in postprandial plasma of dogs. The increase in antioxidant capacity suggests a potential beneficial role of TCT supplementation in the prevention or treatment of several diseases in dogs.}, language = {en} } @article{CarlsohnRohnMayeretal.2010, author = {Carlsohn, Anja and Rohn, Sascha and Mayer, Frank and Schweigert, Florian J.}, title = {Physical activity, antioxidant status, and protein modification in adolescent athletes}, issn = {0195-9131}, doi = {10.1249/Mss.0b013e3181c74f7b}, year = {2010}, abstract = {Exercise may increase reactive oxygen species production, which might impair cell integrity and contractile function of muscle cells. However, little is known about the effect of regular exercise on the antioxidant status of adolescents. Purpose: This study aimed to evaluate the impact of exercise on the antioxidant status and protein modifications in adolescent athletes. Methods: In 90 athletes and 18 controls (16 +/- 2 yr), exercise-related energy expenditure was calculated on the basis of a 7-d activity protocol. Antioxidant intake and plasma concentrations of alpha-tocopherol, carotenoids, and uric acid were analyzed. Plasma antioxidant activity was determined by Trolox equivalent (TE) antioxidant capacity and electron spin resonance spectrometry. Protein modifications were assessed with structural changes of transthyretin using a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Data were analyzed by two-way ANOVA and post hoc by the Tukey-Kramer test (alpha = 0.05). Results: Antioxidant intake correlated with energy intake and was within the recommended daily allowance for vitamins C and E and beta-carotene. Plasma levels of neither nutritional antioxidants nor uric acid differed between the groups. TE antioxidant capacity was higher in athletes (men = 1.47 perpendicular to 0.2 mmol TE per liter, women = 1.45 perpendicular to 0.2 mmol TE per liter) compared with controls (men = 1.17 +/- 0.04 mmol TE per liter, women = 1.14 +/- 0.04 mmol TE per liter) and increased with exercise-related energy expenditure (P = 0.007). Transthyretin cysteinylation rate differed between the groups, with the highest rate of protein modifications in moderately active subjects (P = 0.007). Conclusions: Results suggest that if the nutritional choice of athletes is well balanced, enough antioxidants are provided to meet recommended amounts. Moreover, regular exercise increases blood antioxidant capacity in young athletes, whereas chronic exercise was not shown to promote protein modifications. Thus, in young athletes who are sufficiently supplied with antioxidants, beneficial effects of exercise on antioxidant status rather than on oxidative stress may be anticipated.}, language = {en} } @article{RawelRohnKroll2000, author = {Rawel, Harshadrai Manilal and Rohn, Sascha and Kroll, J{\"u}rgen}, title = {Reactions of selected secondary plant metabolites (glucosinolates and phenols) with food proteins and enzymes - Influence on physicochemical properties, enzyme activity and proteolytic dagradation}, year = {2000}, language = {en} }