@article{KerneckerFienitzNendeletal.2022, author = {Kernecker, Maria and Fienitz, Meike and Nendel, Claas and Paetzig, Marlene and Walzl, Karin Pirhofer and Raatz, Larissa and Schmidt, Martin and Wulf, Monika and Zscheischler, Jana}, title = {Transition zones across agricultural field boundaries for integrated landscape research and management of biodiversity and yields}, series = {Ecological solutions and evidence}, volume = {3}, journal = {Ecological solutions and evidence}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {2688-8319}, doi = {10.1002/2688-8319.12122}, pages = {7}, year = {2022}, abstract = {Biodiversity conservation and agricultural production have been largely framed as separate goals for landscapes in the discourse on land use. Although there is an increasing tendency to move away from this dichotomy in theory, the tendency is perpetuated by the spatially explicit approaches used in research and management practice. Transition zones (TZ) have previously been defined as areas where two adjacent fields or patches interact, and so they occur abundantly throughout agricultural landscapes. Biodiversity patterns in TZ have been extensively studied, but their relationship to yield patterns and social-ecological dimensions has been largely neglected. Focusing on European, temperate agricultural landscapes, we outline three areas of research and management that together demonstrate how TZ might be used to facilitate an integrated landscape approach: (i) plant and animal species' use and response to boundaries and the resulting effects on yield, for a deeper understanding of how landscape structure shapes quantity and quality of TZ; (ii) local knowledge on field or patch-level management and its interactions with biodiversity and yield in TZ, and (iii) conflict prevention and collaborative management across land-use boundaries.}, language = {en} } @article{RaatzPirhoferWalzlMuelleretal.2021, author = {Raatz, Larissa and Pirhofer-Walzl, Karin and M{\"u}ller, Marina E.H. and Scherber, Christoph and Joshi, Jasmin Radha}, title = {Who is the culprit: Is pest infestation responsible for crop yield losses close to semi-natural habitats?}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, edition = {19}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {2045-7758}, doi = {10.1002/ece3.8046}, pages = {13232 -- 13246}, year = {2021}, abstract = {Semi-natural habitats (SNHs) are becoming increasingly scarce in modern agricultural landscapes. This may reduce natural ecosystem services such as pest control with its putatively positive effect on crop production. In agreement with other studies, we recently reported wheat yield reductions at field borders which were linked to the type of SNH and the distance to the border. In this experimental landscape-wide study, we asked whether these yield losses have a biotic origin while analyzing fungal seed and fungal leaf pathogens, herbivory of cereal leaf beetles, and weed cover as hypothesized mediators between SNHs and yield. We established experimental winter wheat plots of a single variety within conventionally managed wheat fields at fixed distances either to a hedgerow or to an in-field kettle hole. For each plot, we recorded the fungal infection rate on seeds, fungal infection and herbivory rates on leaves, and weed cover. Using several generalized linear mixed-effects models as well as a structural equation model, we tested the effects of SNHs at a field scale (SNH type and distance to SNH) and at a landscape scale (percentage and diversity of SNHs within a 1000-m radius). In the dry year of 2016, we detected one putative biotic culprit: Weed cover was negatively associated with yield values at a 1-m and 5-m distance from the field border with a SNH. None of the fungal and insect pests, however, significantly affected yield, neither solely nor depending on type of or distance to a SNH. However, the pest groups themselves responded differently to SNH at the field scale and at the landscape scale. Our findings highlight that crop losses at field borders may be caused by biotic culprits; however, their negative impact seems weak and is putatively reduced by conventional farming practices.}, language = {en} } @article{RaatzPirhoferWalzlMuelleretal.2021, author = {Raatz, Larissa and Pirhofer-Walzl, Karin and M{\"u}ller, Marina E.H. and Scherber, Christoph and Joshi, Jasmin Radha}, title = {Who is the culprit: Is pest infestation responsible for crop yield losses close to semi-natural habitats?}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-54962}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549622}, pages = {13232 -- 13246}, year = {2021}, abstract = {Semi-natural habitats (SNHs) are becoming increasingly scarce in modern agricultural landscapes. This may reduce natural ecosystem services such as pest control with its putatively positive effect on crop production. In agreement with other studies, we recently reported wheat yield reductions at field borders which were linked to the type of SNH and the distance to the border. In this experimental landscape-wide study, we asked whether these yield losses have a biotic origin while analyzing fungal seed and fungal leaf pathogens, herbivory of cereal leaf beetles, and weed cover as hypothesized mediators between SNHs and yield. We established experimental winter wheat plots of a single variety within conventionally managed wheat fields at fixed distances either to a hedgerow or to an in-field kettle hole. For each plot, we recorded the fungal infection rate on seeds, fungal infection and herbivory rates on leaves, and weed cover. Using several generalized linear mixed-effects models as well as a structural equation model, we tested the effects of SNHs at a field scale (SNH type and distance to SNH) and at a landscape scale (percentage and diversity of SNHs within a 1000-m radius). In the dry year of 2016, we detected one putative biotic culprit: Weed cover was negatively associated with yield values at a 1-m and 5-m distance from the field border with a SNH. None of the fungal and insect pests, however, significantly affected yield, neither solely nor depending on type of or distance to a SNH. However, the pest groups themselves responded differently to SNH at the field scale and at the landscape scale. Our findings highlight that crop losses at field borders may be caused by biotic culprits; however, their negative impact seems weak and is putatively reduced by conventional farming practices.}, language = {en} } @article{RaatzBacchiWalzletal.2019, author = {Raatz, Larissa and Bacchi, Nina and Walzl, Karin Pirhofer and Glemnitz, Michael and M{\"u}ller, Marina E. H. and Jasmin Radha, Jasmin and Scherber, Christoph}, title = {How much do we really lose?}, series = {Ecology and evolution}, volume = {9}, journal = {Ecology and evolution}, number = {13}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.5370}, pages = {7838 -- 7848}, year = {2019}, abstract = {Natural landscape elements (NLEs) in agricultural landscapes contribute to biodiversity and ecosystem services, but are also regarded as an obstacle for large-scale agricultural production. However, the effects of NLEs on crop yield have rarely been measured. Here, we investigated how different bordering structures, such as agricultural roads, field-to-field borders, forests, hedgerows, and kettle holes, influence agricultural yields. We hypothesized that (a) yield values at field borders differ from mid-field yields and that (b) the extent of this change in yields depends on the bordering structure. We measured winter wheat yields along transects with log-scaled distances from the border into the agricultural field within two intensively managed agricultural landscapes in Germany (2014 near Gottingen, and 2015-2017 in the Uckermark). We observed a yield loss adjacent to every investigated bordering structure of 11\%-38\% in comparison with mid-field yields. However, depending on the bordering structure, this yield loss disappeared at different distances. While the proximity of kettle holes did not affect yields more than neighboring agricultural fields, woody landscape elements had strong effects on winter wheat yields. Notably, 95\% of mid-field yields could already be reached at a distance of 11.3 m from a kettle hole and at a distance of 17.8 m from hedgerows as well as forest borders. Our findings suggest that yield losses are especially relevant directly adjacent to woody landscape elements, but not adjacent to in-field water bodies. This highlights the potential to simultaneously counteract yield losses close to the field border and enhance biodiversity by combining different NLEs in agricultural landscapes such as creating strips of extensive grassland vegetation between woody landscape elements and agricultural fields. In conclusion, our results can be used to quantify ecocompensations to find optimal solutions for the delivery of productive and regulative ecosystem services in heterogeneous agricultural landscapes.}, language = {en} } @article{RaatzBacchiPirhoferWalzletal.2019, author = {Raatz, Larissa and Bacchi, Nina and Pirhofer Walzl, Karin and Glemnitz, Michael and M{\"u}ller, Marina E. H. and Jasmin Radha, Jasmin and Scherber, Christoph}, title = {How much do we really lose?}, series = {Ecology and Evolution}, volume = {9}, journal = {Ecology and Evolution}, number = {13}, publisher = {John Wiley \& Sons}, address = {S.I.}, issn = {2045-7758}, doi = {10.1002/ece3.5370}, pages = {7838 -- 7848}, year = {2019}, abstract = {Natural landscape elements (NLEs) in agricultural landscapes contribute to biodiversity and ecosystem services, but are also regarded as an obstacle for large-scale agricultural production. However, the effects of NLEs on crop yield have rarely been measured. Here, we investigated how different bordering structures, such as agricultural roads, field-to-field borders, forests, hedgerows, and kettle holes, influence agricultural yields. We hypothesized that (a) yield values at field borders differ from mid-field yields and that (b) the extent of this change in yields depends on the bordering structure. We measured winter wheat yields along transects with log-scaled distances from the border into the agricultural field within two intensively managed agricultural landscapes in Germany (2014 near G{\"o}ttingen, and 2015-2017 in the Uckermark). We observed a yield loss adjacent to every investigated bordering structure of 11\%-38\% in comparison with mid-field yields. However, depending on the bordering structure, this yield loss disappeared at different distances. While the proximity of kettle holes did not affect yields more than neighboring agricultural fields, woody landscape elements had strong effects on winter wheat yields. Notably, 95\% of mid-field yields could already be reached at a distance of 11.3 m from a kettle hole and at a distance of 17.8 m from hedgerows as well as forest borders. Our findings suggest that yield losses are especially relevant directly adjacent to woody landscape elements, but not adjacent to in-field water bodies. This highlights the potential to simultaneously counteract yield losses close to the field border and enhance biodiversity by combining different NLEs in agricultural landscapes such as creating strips of extensive grassland vegetation between woody landscape elements and agricultural fields. In conclusion, our results can be used to quantify ecocompensations to find optimal solutions for the delivery of productive and regulative ecosystem services in heterogeneous agricultural landscapes.}, language = {en} }