@article{TerbishalievaTimmermanMikolaichuketal.2021, author = {Terbishalieva, Baiansuluu and Timmerman, Martin Jan and Mikolaichuk, Alexander and Altenberger, Uwe and Slama, Jiri and Schleicher, Anja Maria and Sudo, Masafumi and Sobel, Edward and Cichy, Sarah Bettina}, title = {Calc-alkaline volcanic rocks and zircon ages of the late Tonian}, series = {International journal of earth sciences}, volume = {110}, journal = {International journal of earth sciences}, number = {1}, publisher = {Springer}, address = {New York}, issn = {1437-3254}, doi = {10.1007/s00531-020-01956-z}, pages = {353 -- 375}, year = {2021}, abstract = {The Big Naryn Complex (BNC) in the East Djetim-Too Range of the Kyrgyz Middle Tianshan block is a tectonized, at least 2 km thick sequence of predominantly felsic to intermediate volcanic rocks intruded by porphyric rhyolite sills. It overlies a basement of metamorphic rocks and is overlain by late Neoproterozoic Djetim-Too Formation sediments; these also occur as tectonic intercalations in the BNC. The up to ca. 1100 m thick Lower Member is composed of predominantly rhyolites-to-dacites and minor basalts, while the at least 900 m thick pyroclastic Upper Member is dominated by rhyolitic-to-dacitic ignimbrites. Porphyric rhyolite sills are concentrated at the top of the Lower Member. A Lower Member rhyolite and a sill sample have LA-ICP-MS U-Pb zircon crystallization ages of 726.1 +/- 2.2 Ma and 720.3 +/- 6.5 Ma, respectively, showing that most of the magmatism occurred within a short time span in the late Tonian-early Cryogenian. Inherited zircons in the sill sample have Neoarchean (2.63, 2.64 Ga), Paleo- (2.33-1.81 Ga), Meso- (1.55 Ga), and Neoproterozoic (ca. 815 Ma) ages, and were derived from a heterogeneous Kuilyu Complex basement. A 1751 +/- 7 Ma Ar-40/Ar-39 age for amphibole from metagabbro is the age of cooling subsequent to Paleoproterozoic metamorphism of the Kuilyu Complex. The large amount of pyroclastic rocks, and their major and trace element compositions, the presence of Neoarchean to Neoproterozoic inherited zircons and a depositional basement of metamorphic rocks point to formation of the BNC in a continental magmatic arc setting.}, language = {en} } @article{MacaulaySobelMikolaichuketal.2016, author = {Macaulay, Euan A. and Sobel, Edward and Mikolaichuk, Alexander and Wack, Michael and Gilder, Stuart A. and Mulch, Andreas and Fortuna, Alla B. and Hynek, Scott and Apayarov, Farid}, title = {The sedimentary record of the Issyk Kul basin, Kyrgyzstan: climatic and tectonic inferences}, series = {Basin research}, volume = {28}, journal = {Basin research}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0950-091X}, doi = {10.1111/bre.12098}, pages = {57 -- 80}, year = {2016}, abstract = {A broad array of new provenance and stable isotope data are presented from two magnetostratigraphically dated sections in the south-eastern Issyk Kul basin of the Central Kyrgyz Tien Shan. The results presented here are discussed and interpreted for two plausible magnetostratigraphic age models. A combination of zircon U-Pb provenance, paleocurrent and conglomerate clast count analyses is used to determine sediment provenance. This analysis reveals that the first coarse-grained, syntectonic sediments (Dzhety Oguz formation) were sourced from the nearby Terskey Range, supporting previous thermochronology-based estimates of a ca. 25-20 Ma onset of deformation in the range. Climate variations are inferred using carbonate stable isotope (delta O-18 and delta C-13) data from 53 samples collected in the two sections and are compared with the oxygen isotope compositions of modern water from 128 samples. Two key features are identified in the stable isotope data set derived from the sediments: (1) isotope values, in particular delta C-13, decrease between ca. 26.0 and 23.6 or 25.6 and 21.0 Ma, and (2) the scatter of delta O-18 values increased significantly after ca. 22.6 or 16.9 Ma. The first feature is interpreted to reflect progressively wetter conditions. Because this feature slightly post-dates the onset of deformation in the Terskey Range, we suggest that it has been caused by orographically enhanced precipitation, implying that surface uplift accompanied late Cenozoic deformation and rock uplift in the Terskey Range. The increased scatter could reflect variable moisture source or availability caused by global climate change following the onset of Miocene glaciations at ca. 22.6 Ma, or enhanced evaporation during the Mid-Miocene climatic optimum at ca. 17-15 Ma.}, language = {en} } @article{WackGilderMacaulayetal.2014, author = {Wack, Michael R. and Gilder, Stuart A. and Macaulay, Euan A. and Sobel, Edward and Charreau, Julien and Mikolaichuk, Alexander}, title = {Cenozoic magnetostratigraphy and magnetic properties of the southern Issyk-Kul basin, Kyrgyzstan}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {629}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2014.03.030}, pages = {14 -- 26}, year = {2014}, abstract = {We present paleomagnetic data from the northern flank of the Tianshan range, southeast of Lake Issyk-Kul (Kyrgyzstan). 613 cores were collected in two parallel sections with a total thickness of 960 m (Chon Kyzylsuu, CK) and 990 m Jeti Oguz, JO), as well as 48 cores at six sites in a nearby anticline. Rock magnetic analyses identify both magnetite and hematite in the fluvial-lacustrine sediments. The concentration of both minerals, the magnetite:hematite ratio, and the average magnetite grain size increase upward in both sections. Anisotropy of anhysteretic remanent magnetization defines a tectonic fabric with sub-horizontal maximum axes that parallel the strike direction together with intermediate and minimum axes that streak out about a great circle orthogonal to the maximum axes suggestive of a tectonic fabric emplaced during folding. Stepwise thermal demagnetization isolates interpretable magnetization components in 284 samples that define 26 polarity chrons in CK and 19 in JO. A positive fold test, dual polarities and systematic changes in rock-magnetic parameters with depth suggest that the high temperature magnetization component was acquired coevally with deposition. An age model based on a visual magnetostratigraphic correlation of both sections with the geomagnetic polarity time scale defines absolute ages from 26.0 to 13.3 Ma, with a fairly constant sedimentation rate of 9-10 cm/ka. A correlation based on a numerical algorithm arrives at a slightly different conclusion, with deposition ages from 25.2 to 11.0 Ma and sedimentation rates from 5 to 8 cm/ka. In comparison with sedimentation rates found at other magnetostratigraphic sections in the Tianshan realm, we infer that the sedimentary record in this part of the Issyk-Kul Basin precedes the more rapid phase of uplift of the Kyrgyz Tianshan. The onset of deposition and concomitant erosion of the adjacent Terskey Range is in good agreement with independent assessments of the exhumation history of this mountain range, with erosion increasing at 25-20 Ma and accelerating after 11-13 Ma. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{MacaulaySobelMikolaichuketal.2013, author = {Macaulay, Euan A. and Sobel, Edward and Mikolaichuk, Alexander and Landgraf, Angela and Kohn, Barry and Stuart, Finlay}, title = {Thermochronologic insight into late Cenozoic deformation in the basement-cored Terskey Range, Kyrgyz Tien Shan}, series = {Tectonics}, volume = {32}, journal = {Tectonics}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/tect.20040}, pages = {487 -- 500}, year = {2013}, abstract = {Basement-cored ranges formed by reverse faulting within intracontinental mountain belts are often composed of poly-deformed lithologies. Geological data capable of constraining the timing, magnitude, and distribution of the most recent deformational phase are usually missing in such ranges. In this paper, we present new low temperature thermochronological and geological data from a transect through the basement-cored Terskey Range, located in the Kyrgyz Tien Shan. Using these data, we are able to investigate the range's late Cenozoic deformation for the first time. Displacements on reactivated faults are constrained and deformation of thermochronologically derived structural markers is assessed. These structural markers postdate the earlier deformational phases, providing the only record of Cenozoic deformation and of the reactivation of structures within the Terskey Range. Overall, these structural markers have a southern inclination, interpreted to reflect the decreasing inclination of the reverse fault bounding the Terskey Range. Our thermochronological data are also used to investigate spatial and temporal variations in the exhumation of the Terskey Range, identifying a three-stage Cenozoic exhumation history: (1) virtually no exhumation in the Paleogene, (2) increase to slightly higher exhumation rates at similar to 26-20Ma, and (3) significant increase in exhumation starting at similar to 10Ma.}, language = {en} } @article{SobelOskinBurbanketal.2006, author = {Sobel, Edward and Oskin, Michael and Burbank, Douglas W. and Mikolaichuk, Alexander}, title = {Exhumation of basement-cored uplifts : Example of the Kyrgyz Range quantified with apatite fission track thermochronology}, doi = {10.1029/2005TC001809}, year = {2006}, abstract = {[1] The Kyrgyz Range, the northernmost portion of the Kyrgyzstan Tien Shan, displays topographic evidence for lateral propagation of surface uplift and exhumation. The highest, most deeply dissected segment lies in the center of the range. To the east, topography and relief decrease, and preserved remnants of a Cretaceous regional erosion surface imply minimal amounts of bedrock exhumation. The timing of exhumation of range segments defines the lateral propagation rate of the range-bounding reverse fault and quantifies the time and erosion depth needed to transform a mountain range from a juvenile to a mature morphology. New multicompositional apatite fission track ( AFT) data from three transects from the eastern Kyrgyz Range, combined with published AFT data, demonstrate that the range has propagated over 110 km eastward over the last similar to 7 - 11 Myr. On the basis of the thermal and topographic evolutionary history, we present a model for a time-varying exhumation rate driven by rock uplift and changes in erodability and the timescale of geomorphic adjustment to surface uplift. Easily eroded, Cenozoic sedimentary rocks overlying resistant basement control early, rapid exhumation and exhibit slow surface uplift rates. As increasing amounts of resistant basement are exposed, exhumation rates decrease while surface uplift rates are sustained or increase, thereby growing topography. As the range becomes high enough to cause ice accumulation and to develop steep river valleys, fluvial and glacial erosion becomes more powerful, and exhumation rates once again increase. Independently determined range-normal shortening rates also varied over time, suggesting a feedback between erosional efficiency and shortening rate}, language = {en} }