@article{BersalliTroendleHeckmannetal.2024, author = {Bersalli, Germ{\´a}n and Tr{\"o}ndle, Tim and Heckmann, Leon and Lilliestam, Johan}, title = {Economic crises as critical junctures for policy and structural changes towards decarbonization}, series = {Climate policy}, volume = {24}, journal = {Climate policy}, number = {3}, publisher = {Taylor \& Francis}, address = {London}, issn = {1469-3062}, doi = {10.1080/14693062.2024.2301750}, pages = {410 -- 427}, year = {2024}, abstract = {Crises may act as tipping points for decarbonization pathways by triggering structural economic change or offering windows of opportunity for policy change. We investigate both types of effects of the global financial and COVID-19 crises on decarbonization in Spain and Germany through a quantitative Kaya-decomposition analysis of CO2 emissions and through a qualitative review of climate and energy policy changes. We show that the global financial crisis resulted in a critical juncture for Spanish CO2 emissions due to the combined effects of the deep economic recession and crisis-induced structural change, resulting in reductions in carbon and energy intensities and shifts in the economic structure. However, the crisis also resulted in a rollback of renewable energy policy, halting progress in the transition to green electricity. The impacts were less pronounced in Germany, where pre-existing decarbonization and policy trends continued after the crisis. Recovery packages had modest effects, primarily due to their temporary nature and the limited share of climate-related spending. The direct short-term impacts of the COVID-19 crisis on CO2 emissions were more substantial in Spain than in Germany. The policy responses in both countries sought to align short-term economic recovery with the long-term climate change goals of decarbonization, but it is too soon to observe their lasting effects. Our findings show that crises can affect structural change and support decarbonization but suggest that such effects depend on pre-existing trends, the severity of the crisis and political manoeuvring during the crisis.}, language = {en} } @article{ReschSchoenigerKleinschmittetal.2022, author = {Resch, Gustav and Sch{\"o}niger, Franziska and Kleinschmitt, Christoph and Franke, Katja and Thonig, Richard and Lilliestam, Johan}, title = {Deep decarbonization of the European power sector calls for dispatchable CSP}, series = {AIP conference proceedings}, journal = {AIP conference proceedings}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1551-7616}, doi = {10.1063/5.0086710}, pages = {050006-1 -- 050006-9}, year = {2022}, abstract = {Concentrating Solar Power (CSP) offers flexible and decarbonized power generation and is one of the few dispatchable renewable technologies able to generate renewable electricity on demand. Today (2018) CSP contributes only 5TWh to the European power generation, but it has the potential to become one of the key pillars for European decarbonization pathways. In this paper we investigate how factors and pivotal policy decisions leading to different futures and associated CSP deployment in Europe in the years up to 2050. In a second step we characterize the scenarios with their associated system cost and the costs of support policies. We show that the role of CSP in Europe critically depends on political developments and the success or failure of policies outside renewable power. In particular, the uptake of CSP depends on the overall decarbonization ambition, the degree of cross border trade of renewable electricity and is enabled by the presence of strong grid interconnection between Southern and Norther European Member States as well as by future electricity demand growth. The presence of other baseload technologies, prominently nuclear power in France, reduce the role and need for CSP. Assuming favorable technological development, we find a strong role for CSP in Europe in all modeled scenarios: contributing between 100TWh to 300TWh of electricity to a future European power system. This would require increasing the current European CSP fleet by a factor of 20 to 60 in the next 30 years. To achieve this financial support between € 0.4-2 billion per year into CSP would be needed, representing only a small share of overall support needs for power-system transformation. Cooperation of Member States could further help to reduce this cost.}, language = {en} } @article{SuesserGaschnigCeglarzetal.2021, author = {S{\"u}sser, Diana and Gaschnig, Hannes and Ceglarz, Andrzej and Stavrakas, Vassilis and Flamos, Alexandros and Lilliestam, Johan}, title = {Better suited or just more complex?}, series = {Energy}, volume = {239}, journal = {Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0360-5442}, doi = {10.1016/j.energy.2021.121909}, pages = {32}, year = {2021}, abstract = {Energy system models are advancing rapidly. However, it is not clear whether models are becoming better, in the sense that they address the questions that decision-makers need to be answered to make well-informed decisions. Therefore, we investigate the gap between model improvements relevant from the perspective of modellers compared to what users of model results think models should address. Thus, we ask: What are the differences between energy model improvements as perceived by modellers, and the actual needs of users of model results? To answer this question, we conducted a literature review, 32 interviews, and an online survey. Our results show that user needs and ongoing improvements of energy system models align to a large degree so that future models are indeed likely to be better than current models. We also find mismatches between the needs of modellers and users, especially in the modelling of social, behavioural and political aspects, the trade-off between model complexity and understandability, and the ways that model results should be communicated. Our findings suggest that a better understanding of user needs and closer cooperation between modellers and users is imperative to truly improve models and unlock their full potential to support the transition towards climate neutrality in Europe.}, language = {en} } @article{ThonigGilmanovaZhanetal.2022, author = {Thonig, Richard and Gilmanova, Alina and Zhan, Jing and Lilliestam, Johan}, title = {Chinese CSP for the world?}, series = {AIP conference proceedings}, journal = {AIP conference proceedings}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1551-7616}, doi = {10.1063/5.0085752}, pages = {1 -- 11}, year = {2022}, abstract = {For three consecutive five-year plans since 2006, China has worked on building up an internationally competitive CSP industry and value chain. One big milestone in commercializing proprietary Chinese CSP technology was the 2016 demonstration program of 20 commercial-scale projects. China sought to increase and demonstrate capacities for domestic CSP technology development and deployment. At the end of the 13th five-year period, we take stock of the demonstrated progress of the Chinese CSP industry towards delivering internationally competitive CSP projects. We find that in January 2021, eight commercial-scale projects, in total 500 MW, have been completed and three others were under construction in China. In addition, Chinese EPC's have participated in three international CSP projects, although proprietary Chinese CSP designs have not been applied outside China. The largest progress has been made in molten-salt tower technology, with several projects by different companies completed and operating successfully: here, the aims were met, and Chinese companies are now at the global forefront of this segment. Further efforts for large-scale demonstration are needed, however, for other CSP technologies, including parabolic trough - with additional demonstration hindered by a lack of further deployment policies. In the near future, Chinese companies seek to employ the demonstrated capabilities in the tower segment abroad and are developing projects using Chinese technology, financing, and components in several overseas markets. If successful, this will likely lead to increasing competition and further cost reductions for the global CSP sector.}, language = {en} } @article{SuesserMartinStavrakasetal.2022, author = {S{\"u}sser, Diana and Martin, Nick and Stavrakas, Vassilis and Gaschnig, Hannes and Talens-Peir{\´o}, Laura and Flamos, Alexandros and Madrid-L{\´o}pez, Cristina and Lilliestam, Johan}, title = {Why energy models should integrate social and environmental factors}, series = {Energy research \& social science}, volume = {92}, journal = {Energy research \& social science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2214-6296}, doi = {10.1016/j.erss.2022.102775}, pages = {102775 -- 102775}, year = {2022}, abstract = {Energy models are used to inform and support decisions within the transition to climate neutrality. In recent years, such models have been criticised for being overly techno-centred and ignoring environmental and social factors of the energy transition. Here, we explore and illustrate the impact of ignoring such factors by comparing model results to model user needs and real-world observations. We firstly identify concrete user needs for better representation of environmental and social factors in energy modelling via interviews, a survey and a workshop. Secondly, we explore and illustrate the effects of omitting non-techno-economic factors in modelling by contrasting policy-targeted scenarios with reality in four EU case study examples. We show that by neglecting environmental and social factors, models risk generating overly optimistic and potentially misleading results, for example by suggesting transition speeds far exceeding any speeds observed, or pathways facing hard-to-overcome resource constraints. As such, modelled energy transition pathways that ignore such factors may be neither desirable nor feasible from an environmental and social perspective, and scenarios may be irrelevant in practice. Finally, we discuss a sample of recent energy modelling innovations and call for continued and increased efforts for improved approaches that better represent environmental and social factors in energy modelling and increase the relevance of energy models for informing policymaking.}, language = {en} } @article{McKennaPfenningerHeinrichsetal.2022, author = {McKenna, Russell and Pfenninger, Stefan and Heinrichs, Heidi and Schmidt, Johannes and Staffell, Iain and Bauer, Christian and Gruber, Katharina and Hahmann, Andrea N. and Jansen, Malte and Klingler, Michael and Landwehr, Natascha and Lars{\´e}n, Xiaoli Guo and Lilliestam, Johan and Pickering, Bryn and Robinius, Martin and Tr{\"o}ndle, Tim and Turkovska, Olga and Wehrle, Sebastian and Weinand, Jann Michael and Wohland, Jan}, title = {High-resolution large-scale onshore wind energy assessments}, series = {Renewable energy}, volume = {182}, journal = {Renewable energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0960-1481}, doi = {10.1016/j.renene.2021.10.027}, pages = {659 -- 684}, year = {2022}, abstract = {The rapid uptake of renewable energy technologies in recent decades has increased the demand of energy researchers, policymakers and energy planners for reliable data on the spatial distribution of their costs and potentials. For onshore wind energy this has resulted in an active research field devoted to analysing these resources for regions, countries or globally. A particular thread of this research attempts to go beyond purely technical or spatial restrictions and determine the realistic, feasible or actual potential for wind energy. Motivated by these developments, this paper reviews methods and assumptions for analysing geographical, technical, economic and, finally, feasible onshore wind potentials. We address each of these potentials in turn, including aspects related to land eligibility criteria, energy meteorology, and technical developments of wind turbine characteristics such as power density, specific rotor power and spacing aspects. Economic aspects of potential assessments are central to future deployment and are discussed on a turbine and system level covering levelized costs depending on locations, and the system integration costs which are often overlooked in such analyses. Non-technical approaches include scenicness assessments of the landscape, constraints due to regulation or public opposition, expert and stakeholder workshops, willingness to pay/accept elicitations and socioeconomic cost-benefit studies. For each of these different potential estimations, the state of the art is critically discussed, with an attempt to derive best practice recommendations and highlight avenues for future research.}, language = {en} } @article{SchaeppiRutzDaehleretal.2021, author = {Sch{\"a}ppi, Remo and Rutz, David and D{\"a}hler, Fabian and Muroyama, Alexander and Haueter, Philipp and Lilliestam, Johan and Patt, Anthony and Furler, Philipp and Steinfeld, Aldo}, title = {Drop-in fuels from sunlight and air}, series = {Nature : the international weekly journal of science}, volume = {601}, journal = {Nature : the international weekly journal of science}, number = {7891}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {Berlin}, issn = {0028-0836}, doi = {10.1038/s41586-021-04174-y}, pages = {63 -- 80}, year = {2021}, abstract = {Aviation and shipping currently contribute approximately 8\% of total anthropogenic CO2 emissions, with growth in tourism and global trade projected to increase this contribution further(1-3). Carbon-neutral transportation is feasible with electric motors powered by rechargeable batteries, but is challenging, if not impossible, for long-haul commercial travel, particularly airtravel(4). A promising solution are drop-in fuels (synthetic alternatives for petroleum-derived liquid hydrocarbon fuels such as kerosene, gasoline or diesel) made from H2O and CO2 by solar-driven processes(5-7).Among the many possible approaches, the thermochemical path using concentrated solar radiation as the source of high-temperature process heat offers potentially high production rates and efficiencies(8), and can deliver truly carbon-neutral fuels if the required CO2 is obtained directly from atmospheric air(9) . If H2O is also extracted from air(10), feedstock sourcing and fuel production can be colocated in desert regions with high solar irradiation and limited accessto water resources. While individual steps of such a scheme have been implemented, here we demonstrate the operation of the entire thermochemical solar fuel production chain, from H2O and CO2 captured directly from ambient air to the synthesis of drop-in transportation fuels (for example, methanol and kerosene), with a modular 5 kW(thermal) pilot-scale solar system operated under field conditions. We further identify the research and development efforts and discuss the economic viability and policies required to bring these solar fuels to market.}, language = {en} } @article{KrupnikWagnerVincentetal.2022, author = {Krupnik, Seweryn and Wagner, Aleksandra and Vincent, Olga and Rudek, Tadeusz J. and Wade, Robert and Misik, Mat{\´u}š and Akerboom, Sanne and Foulds, Chris and Smith Stegen, Karen and Adem, {\c{C}}iğdem and Batel, Susana and Rabitz, Florian and Certom{\`a}, Chiara and Chodkowska-Miszczuk, Justyna and Dokupilov{\´a}, Dušana and Leiren, Merethe D. and Ignatieva, Frolova M. and Gabald{\´o}n-Estevan, Daniel. and Horta, Ana and Karn{\o}e, Peter and Lilliestam, Johan and Loorbach, Derk A. and M{\"u}hlemeier, Susan and N{\´e}moz, Sophie and Nilsson, M{\aa}ns and Osička, Jan and Papamikrouli, Louiza and Pellizioni, Luigi and Sareen, Siddharth and Sarrica, Mauro and Seyfang, Gill and Sovacool, Benjamin K. and Telesiene, Audrone and Zapletalova, Veronika and von Wirth, Timo}, title = {Beyond technology}, series = {Energy research \& social science}, volume = {89}, journal = {Energy research \& social science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {22146296}, doi = {10.1016/j.erss.2022.102536}, pages = {11}, year = {2022}, abstract = {This article enriches the existing literature on the importance and role of the social sciences and humanities (SSH) in renewable energy sources research by providing a novel approach to instigating the future research agenda in this field. Employing a series of in-depth interviews, deliberative focus group workshops and a systematic horizon scanning process, which utilised the expert knowledge of 85 researchers from the field with diverse disciplinary backgrounds and expertise, the paper develops a set of 100 priority questions for future research within SSH scholarship on renewable energy sources. These questions were aggregated into four main directions: (i) deep transformations and connections to the broader economic system (i.e. radical ways of (re)arranging socio-technical, political and economic relations), (ii) cultural and geographical diversity (i.e. contextual cultural, historical, political and socio-economic factors influencing citizen support for energy transitions), (iii) complexifying energy governance (i.e. understanding energy systems from a systems dynamics perspective) and (iv) shifting from instrumental acceptance to value-based objectives (i.e. public support for energy transitions as a normative notion linked to trust-building and citizen engagement). While this agenda is not intended to be—and cannot be—exhaustive or exclusive, we argue that it advances the understanding of SSH research on renewable energy sources and may have important value in the prioritisation of SSH themes needed to enrich dialogues between policymakers, funding institutions and researchers. SSH scholarship should not be treated as instrumental to other research on renewable energy but as intrinsic and of the same hierarchical importance.}, language = {en} } @article{OllierMetzNunezJimenezetal.2022, author = {Ollier, Lana and Metz, Florence and Nu{\~n}ez-Jimenez, Alejandro and Sp{\"a}th, Leonhard and Lilliestam, Johan}, title = {The European 2030 climate and energy package}, series = {Policy sciences}, volume = {55}, journal = {Policy sciences}, number = {1}, publisher = {Springer Science+Business Media LLC}, address = {New York}, issn = {0032-2687}, doi = {10.1007/s11077-022-09447-5}, pages = {161 -- 184}, year = {2022}, abstract = {The European Union's 2030 climate and energy package introduced fundamental changes compared to its 2020 predecessor. These changes included a stronger focus on the internal market and an increased emphasis on technology-neutral decarbonization while simultaneously de-emphasizing the renewables target. This article investigates whether changes in domestic policy strategies of leading member states in European climate policy preceded the observed changes in EU policy. Disaggregating strategic change into changes in different elements (goals, objectives, instrumental logic), allows us to go beyond analyzing the relative prioritization of different goals, and to analyze how policy requirements for reaching those goals were dynamically redefined over time. To this end, we introduce a new method, which based on insights from social network analysis, enables us to systematically trace those strategic chances. We find that shifts in national strategies of the investigated member states preceded the shift in EU policy. In particular, countries reframed their understanding of supply security, and pushed for the internal electricity market also as a security measure to balance fluctuating renewables. Hence, the increasing focus on markets and market integration in the European 2030 package echoed the increasingly central role of the internal market for electricity supply security in national strategies. These findings also highlight that countries dynamically redefined their goals relative to the different phases of the energy transition.}, language = {en} } @article{KleanthisStavrakasCeglarzetal.2022, author = {Kleanthis, Nikos and Stavrakas, Vassilis and Ceglarz, Andrzej and S{\"u}sser, Diana and Schibline, Amanda and Lilliestam, Johan and Flamos, Alexandros}, title = {Eliciting knowledge from stakeholders to identify critical issues of the transition to climate neutrality in Greece, the Nordic Region, and the European Union}, series = {Energy research \& social ccience}, volume = {93}, journal = {Energy research \& social ccience}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2214-6296}, doi = {10.1016/j.erss.2022.102836}, pages = {15}, year = {2022}, abstract = {There are considerable differences in the pace and underlying motivations of the energy transition in the different geographical contexts across Europe. The European Union's commitment to climate neutrality by 2050 requires a better understanding of the energy transition in different contexts and scales to improve cooperation of involved actors. In this article, we identify critical issues and challenges of the European energy transition as perceived by stakeholders and investigate how these perceptions vary across geographical contexts. To do so, we couple a policy document analysis with research based on stakeholder engagement activities in three different scales, national (Greece), regional (Nordic Region) and continental scale (European Union). Our findings show that stakeholder perspectives on the energy transition depend on contextual factors underlying the need for policies sensitive to the different transition issues and challenges in European regions. They also reveal cross-cutting issues and challenges among the three case studies, which could lead to further improvement of the cross-country collaboration to foster the European energy transition.}, language = {en} }