@article{LiKroenerQianetal.2000, author = {Li, J. H. and Kr{\"o}ner, Alfred and Qian, X. L. and O'Brien, Patrick J.}, title = {Tectonic evolution of an early Precambrian high-pressure granulite belt in the North China Craton}, year = {2000}, language = {en} } @article{O'BrienWalteLi2005, author = {O'Brien, Patrick J. and Walte, N. P and Li, J. H.}, title = {The petrology of two distinct granulite types in the Hengshan Mts, China, and tectonic implications}, issn = {1367-9120}, year = {2005}, abstract = {The Archean to Proterozoic Hengshan Complex (North China Craton), comprises tonalitic and granodioritic gneisses with subordinate mafic lenses, pegmatites and granites. Amphibolite facies assemblages predominate, although granulite-facies relics are widespread, and greenschist-facies retrogression occurs in km-wide shear zones. Mafic lenses, locally abundant, occur as strongly deformed amphibolite (hornblende + plagioclase) boudins or sheets. In contrast to previously published models we find two series of mafic rocks with distinctly different granulite-facies evolutions. In the north of the complex, relict high-pressure mafic granulites are garnet + clinopyroxene-bearing rocks with a secondary development of orthopyroxene around both garnet (kelyphites) and clinopyroxene (coronas). South of the newly defined central, E-W-trending, Zhujiafang shear zone, numerous mafic boudins and less-deformed dykes exhibit a macroscopically visible magmatic texture with coronitic growth of metamorphic garnet (full of quartz inclusions) between the magmatic plagioclase and pyroxene domains. Additional orthopyroxene (after magmatic augite) and sodic rims to magmatic plagioclase clearly indicate medium-pressure granulite-facies metamorphism. These findings suggest tectonic juxtaposition in this area of three different structural levels of the same Proterozoic-imprinted crust: high-pressure granulite grade in the northern Hengshan, medium-pressure granulite grade in the southern Hengshan and amphibolite- to greenschist-facies grade in the Wutaishan to the SE. (c) 2004 Elsevier Ltd. All rights reserved}, language = {en} } @article{KronerWildeO'Brienetal.2005, author = {Kroner, Alfred and Wilde, S. A. and O'Brien, Patrick J. and Li, J. H. and Passchier, C. W. and Walte, N. P. and Liu, Dun Yi}, title = {Field relationships, geochemistry, zircon ages and evolution of a late Archaean to Palaeoproterozoic lower crustal section in the Hengshan Terrain of northern China}, issn = {1000-9515}, year = {2005}, abstract = {The Hengshan complex forms part of the central zone of the North China Craton and consists predominantly of ductilely-deformed late Archaean to Palaeoproterozoic high-grade, partly migmatitic, granitoid orthogneisses, intruded by mafic dykes of gabbroic composition. Many highly strained rocks were previously misinterpreted as supracrustal sequences and represent mylonitized granitoids and sheared dykes. Our single zircon dating documents magmatic granitoid emplacement ages between 2.52 Ga and 2.48 Ga, with rare occurrences of 2.7 Ga gneisses, possibly reflecting an older basement. A few granitic gneisses have emplacement ages between 2.35 and 2.1 Ga and show the same structural features as the older rocks, indicating that the main deformation occurred after similar to 2.1 Ga. Intrusion of gabbroic dykes occurred at similar to 1920 Ma, and all Hengshan rocks underwent granulite-facies metamorphism at 1.88-1.85 Ga, followed by retrogression, shearing and uplift. We interpret the Hengshan and adjacent Fuping granitoid gneisses as the lower, plutonic, part of a late Archaean to early Palaeoproterozoic Japan-type magmatic arc, with the upper, volcanic part represented by the nearby Wutai complex. Components of this arc may have evolved at a continental margin as indicated by the 2.7 Ga zircons. Major deformation and HP metamorphism occurred in the late Palaeoproterozoic during the Luliang orogeny when the Eastern and Western blocks of the North China Craton collided to form the Trans-North China orogen. Shear zones in the Hengshan are interpreted as major lower crustal discontinuities post-dating the peak of HP metamorphism, and we suggest that they formed during orogenic collapse and uplift of the Hengshan complex in the late Palaeoproterozoic (< 1.85 Ga)}, language = {en} }