@article{HegerBernardVerdierGessleretal.2019, author = {Heger, Tina and Bernard-Verdier, Maud and Gessler, Arthur and Greenwood, Alex D. and Grossart, Hans-Peter and Hilker, Monika and Keinath, Silvia and Kowarik, Ingo and K{\"u}ffer, Christoph and Marquard, Elisabeth and Mueller, Johannes and Niemeier, Stephanie and Onandia, Gabriela and Petermann, Jana S. and Rillig, Matthias C. and Rodel, Mark-Oliver and Saul, Wolf-Christian and Schittko, Conrad and Tockner, Klement and Joshi, Jasmin Radha and Jeschke, Jonathan M.}, title = {Towards an Integrative, Eco-Evolutionary Understanding of Ecological Novelty: Studying and Communicating Interlinked Effects of Global Change}, series = {Bioscience}, volume = {69}, journal = {Bioscience}, number = {11}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0006-3568}, doi = {10.1093/biosci/biz095}, pages = {888 -- 899}, year = {2019}, abstract = {Global change has complex eco-evolutionary consequences for organisms and ecosystems, but related concepts (e.g., novel ecosystems) do not cover their full range. Here we propose an umbrella concept of "ecological novelty" comprising (1) a site-specific and (2) an organism-centered, eco-evolutionary perspective. Under this umbrella, complementary options for studying and communicating effects of global change on organisms, ecosystems, and landscapes can be included in a toolbox. This allows researchers to address ecological novelty from different perspectives, e.g., by defining it based on (a) categorical or continuous measures, (b) reference conditions related to sites or organisms, and (c) types of human activities. We suggest striving for a descriptive, non-normative usage of the term "ecological novelty" in science. Normative evaluations and decisions about conservation policies or management are important, but require additional societal processes and engagement with multiple stakeholders.}, language = {en} } @article{HilkerSchwachtjeBaieretal.2016, author = {Hilker, Monika and Schwachtje, Jens and Baier, Margarete and Balazadeh, Salma and B{\"a}urle, Isabel and Geiselhardt, Sven and Hincha, Dirk K. and Kunze, Reinhard and Mueller-Roeber, Bernd and Rillig, Matthias G. and Rolff, Jens and Schm{\"u}lling, Thomas and Steppuhn, Anke and van Dongen, Joost and Whitcomb, Sarah J. and Wurst, Susanne and Zuther, Ellen and Kopka, Joachim}, title = {Priming and memory of stress responses in organisms lacking a nervous system}, series = {Biological reviews}, volume = {91}, journal = {Biological reviews}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1464-7931}, doi = {10.1111/brv.12215}, pages = {1118 -- 1133}, year = {2016}, language = {en} } @article{SasMuellerKappeletal.2016, author = {Sas, Claudia and Mueller, Frank and Kappel, Christian and Kent, Tyler V. and Wright, Stephen I. and Hilker, Monika and Lenhard, Michael}, title = {Repeated Inactivation of the First Committed Enzyme Underlies the Loss of Benzaldehyde Emission after the Selfing Transition in Capsella}, series = {Current biology}, volume = {26}, journal = {Current biology}, publisher = {Cell Press}, address = {Cambridge}, issn = {0960-9822}, doi = {10.1016/j.cub.2016.10.026}, pages = {3313 -- 3319}, year = {2016}, abstract = {The enormous species richness of flowering plants is at least partly due to floral diversification driven by interactions between plants and their animal pollinators [1, 2]. Specific pollinator attraction relies on visual and olfactory floral cues [3-5]; floral scent can not only attract pollinators but also attract or repel herbivorous insects [6-8]. However, despite its central role for plant-animal interactions, the genetic control of floral scent production and its evolutionary modification remain incompletely understood [9-13]. Benzenoids are an important class of floral scent compounds that are generated from phenylalanine via several enzymatic pathways [14-17]. Here we address the genetic basis of the loss of floral scent associated with the transition from outbreeding to selfing in the genus Capsella. While the outbreeding C. grandiflora emits benzaldehyde as a major constituent of its floral scent, this has been lost in the selfing C. rubella. We identify the Capsella CNL1 gene encoding cinnamate: CoA ligase as responsible for this variation. Population genetic analysis indicates that CNL1 has been inactivated twice independently in C. rubella via different novel mutations to its coding sequence. Together with a recent study in Petunia [18], this identifies cinnamate: CoA ligase as an evolutionary hotspot for mutations causing the loss of benzenoid scent compounds in association with a shift in the reproductive strategy of Capsella from pollination by insects to self-fertilization.}, language = {en} }