@article{DahlkeSolbesMaturilli2022, author = {Dahlke, Sandro and Solb{\`e}s, Am{\´e}lie and Maturilli, Marion}, title = {Cold air outbreaks in fram strait: climatology, trends, and observations during an extreme season in 2020}, series = {Journal of geophysical research : atmospheres}, volume = {127}, journal = {Journal of geophysical research : atmospheres}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-897X}, doi = {10.1029/2021JD035741}, pages = {18}, year = {2022}, abstract = {Fram Strait in the northern North Atlantic is a key region for marine cold air outbreaks (MCAOs), southward discharges of polar air under northerly air flow, which have a strong impact on air-sea heat fluxes, boundary layer processes and severe weather. This study investigates climatologies and decadal trends of Fram Strait MCAOs of different intensity classes based on the ERA5 reanalysis product for 1979-2020. Among striking interannual variability, it is shown that the main MCAO season is December through March, when MCAOs occur around 2/3 of the time. We report on significant decadal MCAO decreases in December and January, and a significant increase in March. While the mid-winter decrease is mainly related to the different paces of warming between the surface and the lower atmosphere, the increase in March can be related to changes in synoptic circulation patterns. As an explanation for the latter, a possible feedback between retreating Barents Sea sea ice, enhanced cyclonic activity and Fram Strait MCAOs is postulated. Exemplifying the trend toward stronger MCAOs during March, the study details the recordbreaking MCAO season in early 2020, and an observational case study of an extreme MCAO event in March 2020 is conducted. Thereby, radiosonde observations are combined with kinematic air back-trajectories to provide rare observational evidence for the diabatic cooling and drying during the MCAO preconditioning phase.}, language = {en} } @article{DahlkeMaturilli2017, author = {Dahlke, Sandro and Maturilli, Marion}, title = {Contribution of atmospheric advection to the amplified winter warming in the arctic north atlantic region}, series = {Advances in meteorology}, journal = {Advances in meteorology}, publisher = {Hindawi Publ. Corp.}, address = {New York}, issn = {1687-9309}, doi = {10.1155/2017/4928620}, pages = {8}, year = {2017}, abstract = {Arctic Amplification of climate warming is caused by various feedback processes in the atmosphere-ocean-ice system and yields the strongest temperature increase during winter in the Arctic North Atlantic region. In our study, we attempt to quantify the advective contribution to the observed atmospheric warming in the Svalbard area. Based on radiosonde measurements from Ny-{\AA}lesund, a strong dependence of the tropospheric temperature on the synoptic flow direction is revealed. Using FLEXTRA backward trajectories, an increase of advection from the lower latitude Atlantic region towards Ny-{\AA}lesund is found that is attributed to a change in atmospheric circulation patterns. We find that about one-quarter (0.45 K per decade) of the observed atmospheric winter near surface warming trend in the North Atlantic region of the Arctic (2 K per decade) is due to increased advection of warm and moist air from the lower latitude Atlantic region, affecting the entire troposphere.}, language = {en} } @article{KnudsenHeinoldDahlkeetal.2018, author = {Knudsen, Erlend Moster and Heinold, Bernd and Dahlke, Sandro and Bozem, Heiko and Crewell, Susanne and Gorodetskaya, Irina V. and Heygster, Georg and Kunkel, Daniel and Maturilli, Marion and Mech, Mario and Viceto, Carolina and Rinke, Annette and Schmithusen, Holger and Ehrlich, Andre and Macke, Andreas and L{\"u}pkes, Christof and Wendisch, Manfred}, title = {Meteorological conditions during the ACLOUD/PASCAL field campaign near Svalbard in early summer 2017}, series = {Atmospheric chemistry and physics}, volume = {18}, journal = {Atmospheric chemistry and physics}, number = {24}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1680-7316}, doi = {10.5194/acp-18-17995-2018}, pages = {17995 -- 18022}, year = {2018}, abstract = {The two concerted field campaigns, Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) and the Physical feedbacks of Arctic planetary boundary level Sea ice, Cloud and AerosoL (PASCAL), took place near Svalbard from 23 May to 26 June 2017. They were focused on studying Arctic mixed-phase clouds and involved observations from two airplanes (ACLOUD), an icebreaker (PASCAL) and a tethered balloon, as well as ground-based stations. Here, we present the synoptic development during the 35-day period of the campaigns, using near-surface and upper-air meteorological observations, as well as operational satellite, analysis, and reanalysis data. Over the campaign period, short-term synoptic variability was substantial, dominating over the seasonal cycle. During the first campaign week, cold and dry Arctic air from the north persisted, with a distinct but seasonally unusual cold air outbreak. Cloudy conditions with mostly low-level clouds prevailed. The subsequent 2 weeks were characterized by warm and moist maritime air from the south and east, which included two events of warm air advection. These synoptical disturbances caused lower cloud cover fractions and higher-reaching cloud systems. In the final 2 weeks, adiabatically warmed air from the west dominated, with cloud properties strongly varying within the range of the two other periods. Results presented here provide synoptic information needed to analyze and interpret data of upcoming studies from ACLOUD/PASCAL, while also offering unprecedented measurements in a sparsely observed region.}, language = {en} }