@article{ZhongMetwalliRawolleetal.2017, author = {Zhong, Qi and Metwalli, Ezzeldin and Rawolle, Monika and Kaune, Gunar and Bivigou Koumba, Achille Mayelle and Laschewsky, Andre and Papadakis, Christine M. and Cubitt, Robert and Wang, Jiping and M{\"u}ller-Buschbaum, Peter}, title = {Vacuum induced dehydration of swollen poly(methoxy diethylene glycol acrylate) and polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene films probed by in-situ neutron reflectivity}, series = {Polymer : the international journal for the science and technology of polymers}, volume = {124}, journal = {Polymer : the international journal for the science and technology of polymers}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-3861}, doi = {10.1016/j.polymer.2017.07.066}, pages = {263 -- 273}, year = {2017}, abstract = {The isothermal vacuum-induced dehydration of thin films made of poly(methoxy diethylene glycol acrylate) (PMDEGA), which were swollen under ambient conditions, is studied. The dehydration behavior of the homopolymer film as well as of a nanostructured film of the amphiphilic triblock copolymer polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene, abbreviated as PS-b-PMDEGA-b-PS, are probed, and compared to the thermally induced dehydration behavior of such thin thermo-responsive films when they pass through their LCST-type coil-to globule collapse transition. The dehydration kinetics is followed by in-situ neutron reflectivity measurements. Contrast results from the use of deuterated water. Water content and film thickness are significantly reduced during the process, which can be explained by Schott second order kinetics theory for both films. The water content of the dehydrated equilibrium state from this model is very close to the residual water content obtained from the final static measurements, indicating that residual water still remains in the film even after prolonged exposure to the vacuum. In the PS-b-PMDEGA-b-PS film that shows micro-phase separation, the hydrophobic PS domains modify the dehydration process by hindering the water removal, and thus retarding dehydration by about 30\%. Whereas residual water remains tightly bound in the PMDEGA domains, water is completely removed from the PS domains of the block copolymer film. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{ZhongMetwalliRawolleetal.2016, author = {Zhong, Qi and Metwalli, Ezzeldin and Rawolle, Monika and Kaune, Gunar and Bivigou Koumba, Achille Mayelle and Laschewsky, Andre and Papadakis, Christine M. and Cubitt, Robert and Wang, Jiping and M{\"u}ller-Buschbaum, Peter}, title = {Influence of Hydrophobic Polystyrene Blocks on the Rehydration of Polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene Films Investigated by in Situ Neutron Reflectivity}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {49}, journal = {Macromolecules : a publication of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.5b02279}, pages = {317 -- 326}, year = {2016}, abstract = {The rehydration of thermoresponsive polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene (PS-b-PMDEGA-b-PS) films forming a lamellar microphase-separated structure is investigated by in situ neutron reflectivity in a D2O vapor atmosphere. The rehydration of collapsed PS-b-PMDEGA-b-PS films is realized by a temperature change from 45 to 23 degrees C and comprises (1) condensation and absorption of D2O, (2) evaporation of D2O, and (3) reswelling of the film due to internal rearrangement. The hydrophobic PS layers hinder the absorption of condensed D2O, and a redistribution of embedded D2O between the hydrophobic PS layers and the hydrophilic PMDEGA layers is observed. In contrast, the rehydration of semiswollen PS-b-PMDEGA-b-PS films (temperature change from 35 to 23 degrees C) shows two prominent differences: A thicker D2O layer condenses on the surface, causing a more enhanced evaporation of D2O. The rehydrated films differ in film thickness and volume fraction of D2O, which is due to the different thermal protocols, although the final temperature is identical.}, language = {en} } @article{AdelsbergerBivigouKoumbaMiasnikovaetal.2015, author = {Adelsberger, Joseph and Bivigou Koumba, Achille Mayelle and Miasnikova, Anna and Busch, Peter and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Polystyrene-block-poly (methoxy diethylene glycol acrylate)-block-polystyrene triblock copolymers in aqueous solution-a SANS study of the temperature-induced switching behavior}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {293}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {5}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-015-3535-6}, pages = {1515 -- 1523}, year = {2015}, abstract = {A concentrated solution of a symmetric triblock copolymer with a thermoresponsive poly(methoxy diethylene glycol acrylate) (PMDEGA) middle block and short hydrophobic, fully deuterated polystyrene end blocks is investigated in D2O where it undergoes a lower critical solution temperature-type phase transition at ca. 36 A degrees C. Small-angle neutron scattering (SANS) in a wide temperature range (15-50 A degrees C) is used to characterize the size and inner structure of the micelles as well as the correlation between the micelles and the formation of aggregates by the micelles above the cloud point (CP). A model featuring spherical core-shell micelles, which are correlated by a hard-sphere potential or a sticky hard-sphere potential together with a Guinier form factor describing aggregates formed by the micelles above the CP, fits the SANS curves well in the entire temperature range. The thickness of the thermoresponsive micellar PMDEGA shell as well as the hard-sphere radius increase slightly already below the cloud point. Whereas the thickness of the thermoresponsive micellar shell hardly shrinks when heating through the CP and up to 50 A degrees C, the hard-sphere radius decreases within 3.5 K at the CP. The volume fraction decreases already significantly below the CP, which may be at the origin of the previously observed gel-sol transition far below the CP (Miasnikova et al., Langmuir 28: 4479-4490, 2012). Above the CP, small, and at higher temperatures, large aggregates are formed by the micelles.}, language = {en} } @article{ZhongMetwalliRawolleetal.2015, author = {Zhong, Qi and Metwalli, Ezzeldin and Rawolle, Monika and Kaune, Gunar and Bivigou Koumba, Achille Mayelle and Laschewsky, Andr{\´e} and Papadakis, Christine M. and Cubitt, Robert and M{\"u}ller-Buschbaum, Peter}, title = {Rehydration of Thermoresponsive Poly(monomethoxydiethylene glycol acrylate) Films Probed in Situ by Real-Time Neutron Reflectivity}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {48}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.5b00645}, pages = {3604 -- 3612}, year = {2015}, abstract = {The rehydration of thermoresponsive poly(monomethoxydiethylene glycol acrylate) (PMDEGA) films exhibiting a lower critical solution temperature (LCST) type demixing phase transition in aqueous environments, induced by a decrease in temperature, is investigated in situ with real-time neutron reflectivity. Two different starting conditions (collapsed versus partially swollen chain conformation) are compared. In one experiment, the temperature is reduced from above the demixing temperature to well below the demixing temperature. In a second experiment, the starting temperature is below the demixing temperature, but within the transition regime, and reduced to the same final temperature. In both cases, the observed rehydration process can be divided into three stages: first condensation of water from the surrounding atmosphere, then absorption of water by the PMDEGA film and evaporation of excess water, and finally, rearrangement of the PMDEGA chains. The final rehydrated film is thicker and contains more absorbed water as compared with the initially swollen film at the same temperature well below the demixing temperature.}, language = {en} } @article{SkrabaniaMiasnikovaBivigouKoumbaetal.2011, author = {Skrabania, Katja and Miasnikova, Anna and Bivigou Koumba, Achille Mayelle and Zehm, Daniel and Laschewsky, Andr{\´e}}, title = {Examining the UV-vis absorption of RAFT chain transfer agents and their use for polymer analysis}, series = {Polymer Chemistry}, volume = {2}, journal = {Polymer Chemistry}, number = {9}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c1py00173f}, pages = {2074 -- 2083}, year = {2011}, abstract = {The absorption characteristics of a large set of thiocarbonyl based chain transfer agents (CTAs) were studied by UV-vis spectroscopy in order to identify appropriate conditions for exploiting their absorbance bands in end-group analysis of polymers prepared by reversible addition-fragmentation chain transfer (RAFT) polymerisation. Substitution pattern and solvent polarity were found to affect notably the wavelengths and intensities of the pi-pi*- and n-pi*-transition of the thiocarbonyl bond of dithioester and trithiocarbonate RAFT agents. Therefore, it is advisable to refer in end group analysis to the spectral parameters of low molar mass analogues of the active polymer chain ends, rather than to rely on the specific RAFT agent engaged in the polymerisation. When using appropriate conditions, the quantification of the thiocarbonyl end-groups via the pi-pi* band of the thiocarbonyl moiety around 300-310 nm allows a facile, sensitive and surprisingly precise estimation of the number average molar mass of the polymers produced, without the need of particular end group labels. Moreover, when additional methods for absolute molar mass determination can be applied, the quantification of the thiocarbonyl end-groups by UV-spectroscopy provides a good estimate of the degree of active end group for a given polymer sample.}, language = {en} } @article{AdelsbergerMeierKollBivigouKoumbaetal.2011, author = {Adelsberger, Joseph and Meier-Koll, Andreas and Bivigou Koumba, Achille Mayelle and Busch, Peter and Holderer, Olaf and Hellweg, Thomas and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {The collapse transition and the segmental dynamics in concentrated micellar solutions of P(S-b-NIPAM) diblock copolymers}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {289}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {5-6}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-011-2382-3}, pages = {711 -- 720}, year = {2011}, abstract = {We investigate concentrated solutions of poly(styrene-b-N-isopropyl acrylamide) (P(S-b-NIPAM)) diblock copolymers in deuterated water (D2O). Both structural changes and the changes of the segmental dynamics occurring upon heating through the lower critical solution temperature (LCST) of PNIPAM are studied using small-angle neutron scattering and neutron spin-echo spectroscopy. The collapse of the micellar shell and the cluster formation of collapsed micelles at the LCST as well as an increase of the segmental diffusion coefficient after crossing the LCST are detected. Comparing to our recent results on a triblock copolymer P(S-b-NIPAM-b-S) [25], we observe that the collapse transition of P(S-b-NIPAM) is more complex and that the PNIPAM segmental dynamics are faster than in P(S-b-NIPAM-b-S).}, language = {en} } @article{ZhongMetwalliKauneetal.2012, author = {Zhong, Qi and Metwalli, Ezzeldin and Kaune, Gunar and Rawolle, Monika and Bivigou Koumba, Achille Mayelle and Laschewsky, Andr{\´e} and Papadakis, Christine M. and Cubitt, Robert and M{\"u}ller-Buschbaum, Peter}, title = {Switching kinetics of thin thermo-responsive hydrogel films of poly(monomethoxy-diethyleneglycol-acrylate) probed with in situ neutron reflectivity}, series = {Soft matter}, volume = {8}, journal = {Soft matter}, number = {19}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c2sm25401h}, pages = {5241 -- 5249}, year = {2012}, abstract = {The switching kinetics of thin thermo-responsive hydrogel films of poly(monomethoxy-diethyleneglycol-acrylate) (PMDEGA) are investigated. Homogeneous and smooth PMDEGA films with a thickness of 35.9 nm are prepared on silicon substrates by spin coating. As probed with white light interferometry, PMDEGA films with a thickness of 35.9 nm exhibit a phase transition temperature of the lower critical solution temperature (LCST) type of 40 degrees C. In situ neutron reflectivity is performed to investigate the thermo-responsive behavior of these PMDEGA hydrogel films in response to a sudden thermal stimulus in deuterated water vapor atmosphere. The collapse transition proceeds in a complex way which can be seen as three steps. The first step is the shrinkage of the initially swollen film by a release of water. In the second step the thickness remains constant with water molecules embedded in the film. In the third step, perhaps due to a conformational rearrangement of the collapsed PMDEGA chains, water is reabsorbed from the vapor atmosphere, thereby giving rise to a relaxation process. Both the shrinkage and relaxation processes can be described by a simple model of hydrogel deswelling.}, language = {en} } @article{AdelsbergerMetwalliDiethertetal.2012, author = {Adelsberger, Joseph and Metwalli, Ezzeldin and Diethert, Alexander and Grillo, Isabelle and Bivigou Koumba, Achille Mayelle and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Kinetics of collapse transition and cluster formation in a thermoresponsive micellar solution of P(S-b-NIPAM-b-S) induced by a temperature jump}, series = {Macromolecular rapid communications}, volume = {33}, journal = {Macromolecular rapid communications}, number = {3}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1022-1336}, doi = {10.1002/marc.201100631}, pages = {254 -- 259}, year = {2012}, abstract = {Structural changes at the intra- as well as intermicellar level were induced by the LCST-type collapse transition of poly(N-isopropyl acrylamide) in ABA triblock copolymer micelles in water. The distinct process kinetics was followed in situ and in real-time using time-resolved small-angle neutron scattering (SANS), while a micellar solution of a triblock copolymer, consisting of two short deuterated polystyrene endblocks and a long thermoresponsive poly(N-isopropyl acrylamide) middle block, was heated rapidly above its cloud point. A very fast collapse together with a multistep aggregation behavior is observed. The findings of the transition occurring at several size and time levels may have implications for the design and application of such thermoresponsive self-assembled systems.}, language = {en} } @article{AdelsbergerGrilloKulkarnietal.2013, author = {Adelsberger, Joseph and Grillo, Isabelle and Kulkarni, Amit and Sharp, Melissa and Bivigou Koumba, Achille Mayelle and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Kinetics of aggregation in micellar solutions of thermoresponsive triblock copolymers - influence of concentration, start and target temperatures}, series = {Soft matter}, volume = {9}, journal = {Soft matter}, number = {5}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c2sm27152d}, pages = {1685 -- 1699}, year = {2013}, abstract = {In aqueous solution, symmetric triblock copolymers with a thermoresponsive middle block and hydrophobic end blocks form flower-like core-shell micelles which collapse and aggregate upon heating through the cloud point (CP). The collapse of the micellar shell and the intermicellar aggregation are followed in situ and in real-time using time-resolved small-angle neutron scattering (SANS), while heating micellar solutions of a poly((styrene-d(8))-b-(N-isopropyl acrylamide)-b-(styrene-d(8))) triblock copolymer in D2O rapidly through their CP. The influence of polymer concentration as well as of the start and target temperatures is addressed. In all cases, the micellar collapse is very fast. The collapsed micelles immediately form small clusters which contain voids. They densify which slows down or even stops their growth. For low concentrations and target temperatures just above the CP, i.e. shallow temperature jumps, the subsequent growth of the clusters is described by diffusion-limited aggregation. In contrast, for higher concentrations and/or higher target temperatures, i.e. deep temperature jumps, intermicellar bridges dominate the growth. Eventually, in all cases, the clusters coagulate which results in macroscopic phase separation. For shallow temperature jumps, the cluster surfaces stay rough; whereas for deep temperature jumps, a concentration gradient develops at late stages. These results are important for the development of conditions for thermal switching in applications, e.g. for the use of thermoresponsive micellar systems for transport and delivery purposes.}, language = {en} } @article{ZhongMetwalliRawolleetal.2013, author = {Zhong, Qi and Metwalli, Ezzeldin and Rawolle, Monika and Kaune, Gunar and Bivigou Koumba, Achille Mayelle and Laschewsky, Andr{\´e} and Papadakis, Christine M. and Cubitt, Robert and M{\"u}ller-Buschbaum, Peter}, title = {Structure and Thermal Response of Thin Thermoresponsive Polystyrene-block-poly(methoxydiethylene glycol acrylate)-block-polystyrene Films}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {46}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/ma400627u}, pages = {4069 -- 4080}, year = {2013}, abstract = {Thin thermoresponsive films of the triblock copolymer polystyrene-block-poly(methoxydiethylene glycol acrylate)-block-polystyrene (P(S-b-MDEGA-b-S)) are investigated on silicon substrates. By spin coating, homogeneous and smooth films are prepared for a range of film thicknesses from 6 to 82 nm. Films are stable with respect to dewetting as investigated with optical microscopy and atomic force microscopy. P(S-b-MDEGA-b-S) films with a thickness of 39 nm exhibit a phase transition of the lower critical solution temperature (LCST) type at 36.5 degrees C. The swelling and the thermoresponsive behavior of the films with respect to a sudden thermal stimulus are probed with in-situ neutron reflectivity. In undersaturated water vapor swelling proceeds without thickness increase. The thermoresponse proceeds in three steps: First, the film rejects water as the temperature is above LCST. Next, it stays constant for 600 s, before the collapsed film takes up water again. With ATR-FTIR measurements, changes of bound water in the film caused by different thermal stimuli are studied. Hydrogen bonds only form between C=O and water in the swollen film. Above the LCST most hydrogen bonds with water are broken, but some amount of bound water remains inside the film in agreement with the neutron reflectivity data. Grazing-incidence small-angle X-ray scattering (GISAXS) shows that the inner lateral structure is not significantly influenced by the different thermal stimuli.}, language = {en} }