@article{MerzAertsArnbjergNielsenetal.2014, author = {Merz, Bruno and Aerts, Jeroen C. J. H. and Arnbjerg-Nielsen, Karsten and Baldi, M. and Becker, Andrew C. and Bichet, A. and Bloeschl, G. and Bouwer, Laurens M. and Brauer, Achim and Cioffi, F. and Delgado, Jose Miguel Martins and Gocht, M. and Guzzetti, F. and Harrigan, S. and Hirschboeck, K. and Kilsby, C. and Kron, W. and Kwon, H. -H. and Lall, U. and Merz, R. and Nissen, K. and Salvatti, P. and Swierczynski, Tina and Ulbrich, U. and Viglione, A. and Ward, P. J. and Weiler, M. and Wilhelm, B. and Nied, Manuela}, title = {Floods and climate: emerging perspectives for flood risk assessment and management}, series = {Natural hazards and earth system sciences}, volume = {14}, journal = {Natural hazards and earth system sciences}, number = {7}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1561-8633}, doi = {10.5194/nhess-14-1921-2014}, pages = {1921 -- 1942}, year = {2014}, abstract = {Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction of local, catchment-specific characteristics, such as meteorology, topography and geology. These traditional views have been beneficial, but they have a narrow framing. In this paper we contrast traditional views with broader perspectives that are emerging from an improved understanding of the climatic context of floods. We come to the following conclusions: (1) extending the traditional system boundaries (local catchment, recent decades, hydrological/hydraulic processes) opens up exciting possibilities for better understanding and improved tools for flood risk assessment and management. (2) Statistical approaches in flood estimation need to be complemented by the search for the causal mechanisms and dominant processes in the atmosphere, catchment and river system that leave their fingerprints on flood characteristics. (3) Natural climate variability leads to time-varying flood characteristics, and this variation may be partially quantifiable and predictable, with the perspective of dynamic, climate-informed flood risk management. (4) Efforts are needed to fully account for factors that contribute to changes in all three risk components (hazard, exposure, vulnerability) and to better understand the interactions between society and floods. (5) Given the global scale and societal importance, we call for the organization of an international multidisciplinary collaboration and data-sharing initiative to further understand the links between climate and flooding and to advance flood research.}, language = {en} } @article{BersierFruchterStrolgeretal.2006, author = {Bersier, David and Fruchter, Andrew S. and Strolger, Louis-Gregory and Gorosabel, Javier and Levan, Andrew and Burud, Ingunn and Rhoads, James E. and Becker, Andrew C. and Cassan, Andrew C. and Chornock, Ryan and Covino, Stefano and De Jong, Roelof S. and Dominis, Dijana and Filippenko, Alexei V. and Hjorth, Jens and Holmberg, Johan and Malesani, Daniele and Mobasher, Bahram and Olsen, Kurt A. G. and Stefanon, Mauro and Castro Cer{\´o}n, Jos{\´e} Mar{\´i}a C. and Fynbo, Johan P. U. and Holland, Stephen T. and Kouveliotou, Chryssa and Pedersen, Hans-Georg and Tanvir, Nieal R. and Woosley, S. E.}, title = {Evidence for a supernova associated with the X-ray flash 020903}, issn = {0004-637X}, doi = {10.1086/502640}, year = {2006}, abstract = {We present ground-based and Hubble Space Telescope optical observations of the X-ray flash ( XRF) 020903, covering 300 days. The afterglow showed a very rapid rise in the first day, followed by a relatively slow decay in the next few days. There was a clear bump in the light curve after similar to 25 days, accompanied by a drastic change in the spectral energy distribution. The light curve and the spectral energy distribution are naturally interpreted as describing the emergence and subsequent decay of a supernova ( SN), similar to SN 1998bw. At peak luminosity, the SN is estimated to be 0.8 +/- 0.1 mag fainter than SN 1998bw. This argues in favor of the existence of a SN associated with this XRF. A spectrum obtained 35 days after the burst shows emission lines from the host galaxy. We use this spectrum to put an upper limit on the oxygen abundance of the host at [O/H] <= 0.6 dex. We also discuss a possible trend between the softness of several bursts and the early behavior of the optical afterglow, in the sense that XRFs and X-ray-rich gamma- ray bursts ( GRBs) seem to have a plateau phase or even a rising light curve. This can be naturally explained in models in which XRFs are similar to GRBs but are seen off the jet axis.}, language = {en} }