@article{AlSa'diJaiserBagnichetal.2012, author = {Al-Sa'di, Mahmoud and Jaiser, Frank and Bagnich, Sergey A. and Unger, Thomas and Blakesley, James C. and Wilke, Andreas and Neher, Dieter}, title = {Electrical and optical simulations of a polymer-based phosphorescent organic light-emitting diode with high efficiency}, series = {Journal of polymer science : B, Polymer physics}, volume = {50}, journal = {Journal of polymer science : B, Polymer physics}, number = {22}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0887-6266}, doi = {10.1002/polb.23158}, pages = {1567 -- 1576}, year = {2012}, abstract = {A comprehensive numerical device simulation of the electrical and optical characteristics accompanied with experimental measurements of a new highly efficient system for polymer-based light-emitting diodes doped with phosphorescent dyes is presented. The system under investigation comprises an electron transporter attached to a polymer backbone blended with an electronically inert small molecule and an iridium-based green phosphorescent dye which serves as both emitter and hole transporter. The device simulation combines an electrical and an optical model. Based on the known highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels of all components as well as the measured electrical and optical characteristics of the devices, we model the emissive layer as an effective medium using the dye's HOMO as hole transport level and the polymer LUMO as electron transport level. By fine-tuning the injection barriers at the electron and hole-injecting contact, respectively, in simulated devices, unipolar device characteristics were fitted to the experimental data. Simulations using the so-obtained set of parameters yielded very good agreement to the measured currentvoltage, luminancevoltage characteristics, and the emission profile of entire bipolar light-emitting diodes, without additional fitting parameters. The simulation was used to gain insight into the physical processes and the mechanisms governing the efficiency of the organic light-emitting diode, including the position and extent of the recombination zone, carrier concentration profiles, and field distribution inside the device. The simulations show that the device is severely limited by hole injection, and that a reduction of the hole-injection barrier would improve the device efficiency by almost 50\%.}, language = {en} } @article{SalertKruegerBagnichetal.2013, author = {Salert, Beatrice Ch. D. and Krueger, Hartmut and Bagnich, Sergey A. and Unger, Thomas and Jaiser, Frank and Al-Sa'di, Mahmoud and Neher, Dieter and Hayer, Anna and Eberle, Thomas}, title = {New polymer matrix system for phosphorescent organic light-emitting diodes and the role of the small molecular co-host}, series = {Journal of polymer science : A, Polymer chemistry}, volume = {51}, journal = {Journal of polymer science : A, Polymer chemistry}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0887-624X}, doi = {10.1002/pola.26409}, pages = {601 -- 613}, year = {2013}, abstract = {A new matrix system for phosphorescent organic light-emitting diodes (OLEDs) based on an electron transporting component attached to an inert polymer backbone, an electronically neutral co-host, and a phosphorescent dye that serves as both emitter and hole conductor are presented. The inert co-host is used either as small molecules or covalently connected to the same chain as the electron-transporting host. The use of a small molecular inert co-host in the active layer is shown to be highly advantageous in comparison to a purely polymeric matrix bearing the same functionalities. Analysis of the dye phosphorescence decay in pure polymer, small molecular co-host film, and their blend lets to conclude that dye molecules distribute mostly in the small molecular co-host phase, where the co-host prevents agglomeration and self-quenching of the phosphorescence as well as energy transfer to the electron transporting units. In addition, the co-host accumulates at the anode interface where it acts as electron blocking layer and improves hole injection. This favorable phase separation between polymeric and small molecular components results in devices with efficiencies of about 47 cd/A at a luminance of 1000 cd/m(2). Investigation of OLED degradation demonstrates the presence of two time regimes: one fast component that leads to a strong decrease at short times followed by a slower decrease at longer times. Unlike the long time degradation, the efficiency loss that occurs at short times is reversible and can be recovered by annealing of the device at 180 degrees C. We also show that the long-time degradation must be related to a change of the optical and electrical bulk properties.}, language = {en} }