@misc{GranacherLesinskiBueschetal.2016, author = {Granacher, Urs and Lesinski, Melanie and B{\"u}sch, Dirk and M{\"u}hlbauer, Thomas and Prieske, Olaf and Puta, Christian and Gollhofer, Albert and Behm, David George}, title = {Effects of resistance training in youth athletes on muscular fitness and athletic performance}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {429}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406574}, pages = {14}, year = {2016}, abstract = {During the stages of long-term athlete development (LTAD), resistance training (RT) is an important means for (i) stimulating athletic development, (ii) tolerating the demands of long-term training and competition, and (iii) inducing long-term health promoting effects that are robust over time and track into adulthood. However, there is a gap in the literature with regards to optimal RT methods during LTAD and how RT is linked to biological age. Thus, the aims of this scoping review were (i) to describe and discuss the effects of RT on muscular fitness and athletic performance in youth athletes, (ii) to introduce a conceptual model on how to appropriately implement different types of RT within LTAD stages, and (iii) to identify research gaps from the existing literature by deducing implications for future research. In general, RT produced small -to -moderate effects on muscular fitness and athletic performance in youth athletes with muscular strength showing the largest improvement. Free weight, complex, and plyometric training appear to be well -suited to improve muscular fitness and athletic performance. In addition, balance training appears to be an important preparatory (facilitating) training program during all stages of LTAD but particularly during the early stages. As youth athletes become more mature, specificity, and intensity of RT methods increase. This scoping review identified research gaps that are summarized in the following and that should be addressed in future studies: (i) to elucidate the influence of gender and biological age on the adaptive potential following RT in youth athletes (especially in females), (ii) to describe RT protocols in more detail (i.e., always report stress and strain based parameters), and (iii) to examine neuromuscular and tendomuscular adaptations following RT in youth athletes.}, language = {en} } @misc{GranacherSchellbachKleinetal.2016, author = {Granacher, Urs and Schellbach, J{\"o}rg and Klein, Katja and Prieske, Olaf and Baeyens, Jean-Pierre and M{\"u}hlbauer, Thomas}, title = {Effects of core strength training using stable versus unstable surfaces on physical fitness in adolescents}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-93490}, pages = {11}, year = {2016}, abstract = {Background It has been demonstrated that core strength training is an effective means to enhance trunk muscle strength (TMS) and proxies of physical fitness in youth. Of note, cross-sectional studies revealed that the inclusion of unstable elements in core strengthening exercises produced increases in trunk muscle activity and thus provide potential extra training stimuli for performance enhancement. Thus, utilizing unstable surfaces during core strength training may even produce larger performance gains. However, the effects of core strength training using unstable surfaces are unresolved in youth. This randomized controlled study specifically investigated the effects of core strength training performed on stable surfaces (CSTS) compared to unstable surfaces (CSTU) on physical fitness in school-aged children. Methods Twenty-seven (14 girls, 13 boys) healthy subjects (mean age: 14 ± 1 years, age range: 13-15 years) were randomly assigned to a CSTS (n = 13) or a CSTU (n = 14) group. Both training programs lasted 6 weeks (2 sessions/week) and included frontal, dorsal, and lateral core exercises. During CSTU, these exercises were conducted on unstable surfaces (e.g., TOGU© DYNAIR CUSSIONS, THERA-BAND© STABILITY TRAINER). Results Significant main effects of Time (pre vs. post) were observed for the TMS tests (8-22\%, f = 0.47-0.76), the jumping sideways test (4-5\%, f = 1.07), and the Y balance test (2-3\%, f = 0.46-0.49). Trends towards significance were found for the standing long jump test (1-3\%, f = 0.39) and the stand-and-reach test (0-2\%, f = 0.39). We could not detect any significant main effects of Group. Significant Time x Group interactions were detected for the stand-and-reach test in favour of the CSTU group (2\%, f = 0.54). Conclusions Core strength training resulted in significant increases in proxies of physical fitness in adolescents. However, CSTU as compared to CSTS had only limited additional effects (i.e., stand-and-reach test). Consequently, if the goal of training is to enhance physical fitness, then CSTU has limited advantages over CSTS.}, language = {en} } @article{HammamiGranacherMakhloufetal.2016, author = {Hammami, Raouf and Granacher, Urs and Makhlouf, Issam and Behm, David George and Chaouachi, Anis}, title = {SEQUENCING EFFECTS OF BALANCE AND PLYOMETRIC TRAINING ON PHYSICAL PERFORMANCE IN YOUTH SOCCER ATHLETES}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {30}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, publisher = {Elsevier}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000001425}, pages = {3278 -- 3289}, year = {2016}, abstract = {Balance training may have a preconditioning effect on subsequent power training with youth. There are no studies examining whether the sequencing of balance and plyometric training has additional training benefits. The objective was to examine the effect of sequencing balance and plyometric training on the performance of 12- to 13-year-old athletes. Twenty-four young elite soccer players trained twice per week for 8 weeks either with an initial 4 weeks of balance training followed by 4 weeks of plyometric training (BPT) or 4 weeks of plyometric training proceeded by 4 weeks of balance training (PBT). Testing was conducted pre- and posttraining and included medicine ball throw; horizontal and vertical jumps; reactive strength; leg stiffness; agility; 10-, 20-, and 30-m sprints; Standing Stork balance test; and Y-Balance test. Results indicated that BPT provided significantly greater improvements with reactive strength index, absolute and relative leg stiffness, triple hop test, and a trend for the Y-Balance test (p = 0.054) compared with PBT. Although all other measures had similar changes for both groups, the average relative improvement for the BPT was 22.4\% (d = 1.5) vs. 15.0\% (d = 1.1) for the PBT. BPT effect sizes were greater with 8 of 13 measures. In conclusion, although either sequence of BPT or PBT improved jumping, hopping, sprint acceleration, and Standing Stork and Y-Balance, BPT initiated greater training improvements in reactive strength index, absolute and relative leg stiffness, triple hop test, and the Y-Balance test. BPT may provide either similar or superior performance enhancements compared with PBT.}, language = {en} } @article{NegraChaabeneHammamietal.2016, author = {Negra, Yassine and Chaabene, Helmi and Hammami, Mehrez and Hachana, Younes and Granacher, Urs}, title = {EFFECTS OF HIGH-VELOCITY RESISTANCE TRAINING ON ATHLETIC PERFORMANCE IN PREPUBERAL MALE SOCCER ATHLETES}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {30}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, publisher = {Wiley-Blackwell}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000001433}, pages = {3290 -- 3297}, year = {2016}, abstract = {The aim of this study was to assess the effectiveness of a 12-week in-season low-to-moderate load high-velocity resistance training (HVRT) in addition to soccer training as compared with soccer training only on proxies of athletic performance in prepubertal soccer players. Twenty-four male soccer players performed 2 different protocols: (a) regular soccer training with 5 sessions per week (n = 11; age = 12.7 +/- 0.3 years) and (b) regular soccer training with 3 sessions per week and HVRT with 2 sessions per week (n = 13; age = 12.8 +/- 0.2 years). The outcome measures included tests for the assessment of muscle strength (e.g., 1 repetition maximum [1RM] half-squat tests), jump ability (e.g., countermovement jump, squat jump [SJ], standing long jump [SLJ], and multiple 5-bound tests [MB5s]), linear speed (e.g., 5-, 10-, 20-, and 30-m sprint tests), and change of direction (e.g., T-test and Illinois change of direction test). Results revealed significant group 3 test interactions for the SJ test (p <= 0.05, d = 0.59) and the SLJ test (p < 0.01, d = 0.83). Post hoc tests illustrated significant pre-post changes in the HVRT group (SJ: Delta 22\%, p < 0.001, d = 1.26; SLJ: Delta 15\%, p < 0.001, d = 1.30) but not in the control group. In addition, tendencies toward significant interaction effects were found for the 1RM half-squat (p = 0.08, d = 0.54) and the 10-m sprint test (p = 0.06, d = 0.57). Significant pre-post changes were found for both parameters in the HVRT group only (1RM: Delta 25\%, p < 0.001, d = 1.23; 10-m sprint: Delta 7\%, p < 0.0001, d = 1.47). In summary, in-season low-to-moderate load HVRT conducted in combination with regular soccer training is a safe and feasible intervention that has positive effects on maximal strength, vertical and horizontal jump and sprint performance as compared with soccer training only.}, language = {en} }