@article{DavidzonIlbertFaisstetal.2018, author = {Davidzon, Iary and Ilbert, Olivier and Faisst, Andreas L. and Sparre, Martin and Capak, Peter L.}, title = {An Alternate Approach to Measure Specific Star Formation Rates at 2 < z < 7}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {852}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aaa19e}, pages = {11}, year = {2018}, abstract = {We trace the specific star formation rate (sSFR) of massive star-forming galaxies (greater than or similar to 10(10)M(circle dot)) from z similar to 2 to 7. Our method is substantially different from previous analyses, as it does not rely on direct estimates of star formation rate, but on the differential evolution of the galaxy stellar mass function (SMF). We show the reliability of this approach by means of semianalytical and hydrodynamical cosmological simulations. We then apply it to real data, using the SMFs derived in the COSMOS and CANDELS fields. We find that the sSFR is proportional to (1 + z)(1.1) (+/-) (0.2) at z > 2, in agreement with other observations but in tension with the steeper evolution predicted by simulations from z similar to 4 to 2. We investigate the impact of several sources of observational bias, which, however, cannot account for this discrepancy. Although the SMF of high-redshift galaxies is still affected by significant errors, we show that future large-area surveys will substantially reduce them, making our method an effective tool to probe the massive end of the main sequence of star-forming galaxies.}, language = {en} } @article{SchroetterBoucheZabletal.2019, author = {Schroetter, Ilane and Bouche, Nicolas F. and Zabl, Johannes and Contini, Thierry and Wendt, Martin and Schaye, Joop and Mitchell, Peter and Muzahid, Sowgat and Marino, Raffaella Anna and Bacon, Roland and Lilly, Simon J. and Richard, Johan and Wisotzki, Lutz}, title = {MusE GAs FLOw andWind (MEGAFLOW)}, series = {Monthly notices of the Royal Astronomical Society}, volume = {490}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz2822}, pages = {4368 -- 4381}, year = {2019}, abstract = {We present results from our on-going MusE GAs FLOw and Wind (MEGAFLOW) survey, which consists of 22 quasar lines of sight, each observed with the integral field unit MUSE and the UVES spectrograph at the ESO Very Large Telescopes (VLT). The goals of this survey are to study the properties of the circumgalactic medium around z similar to 1 star-forming galaxies. The absorption-line selected survey consists of 79 strong MgII absorbers (with rest-frame equivalent width greater than or similar to 0.3 angstrom) and, currently, 86 associated galaxies within 100 projected kpc of the quasar with stellar masses (M-star) from 109 to 1011 M-circle dot. We find that the cool halo gas traced by MgII is not isotropically distributed around these galaxies from the strong bi-modal distribution in the azimuthal angle of the apparent location of the quasar with respect to the galaxy major axis. This supports a scenario in which outflows are bi-conical in nature and co-exist with a co-planar gaseous structure extending at least up to 60-80 kpc. Assuming that absorbers near the minor axis probe outflows, the current MEGAFLOW sample allowed us to select 26 galaxy-quasar pairs suitable for studying winds. From this sample, using a simple geometrical model, we find that the outflow velocity only exceeds the escape velocity when M-star less than or similar to 4 x 10(9) M-circle dot, implying the cool material is likely to fall back except in the smallest haloes. Finally, we find that the mass loading factor., the ratio between the ejected mass rate and the star formation rate, appears to be roughly constant with respect to the galaxy mass.}, language = {en} } @article{HaniEllisonSparreetal.2019, author = {Hani, Maan H. and Ellison, Sara L. and Sparre, Martin and Grand, Robert J. J. and Pakmor, R{\"u}diger and G{\´o}mez, Facundo A. and Springel, Volker}, title = {The diversity of the circumgalactic medium around z=0 Milky Way-mass galaxies from the Auriga simulations}, series = {Monthly notices of the Royal Astronomical Society}, volume = {488}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz1708}, pages = {135 -- 152}, year = {2019}, abstract = {Galaxies are surrounded by massive gas reservoirs ( i.e. the circumgalactic medium; CGM) which play a key role in their evolution. The properties of the CGM, which are dependent on a variety of internal and environmental factors, are often inferred from absorption line surveys which rely on a limited number of single lines-of-sight. In this work we present an analysis of 28 galaxy haloes selected from the Auriga project, a cosmological magneto-hydrodynamical zoom-in simulation suite of isolated MilkyWay-mass galaxies, to understand the impact of CGM diversity on observational studies. Although the Auriga haloes are selected to populate a narrow range in halo mass, our work demonstrates that the CGM of L-star galaxies is extremely diverse: column densities of commonly observed species span similar to 3-4 dex and their covering fractions range from similar to 5 to 90 per cent. Despite this diversity, we identify the following correlations: 1) the covering fractions ( CF) of hydrogen and metals of the Auriga haloes positively correlate with stellar mass, 2) the CF of H I, C IV, and Si II anticorrelate with active galactic nucleus luminosity due to ionization effects, and 3) the CF of H I, C IV, and Si II positively correlate with galaxy disc fraction due to outflows populating the CGM with cool and dense gas. The Auriga sample demonstrates striking diversity within the CGM of L-star galaxies, which poses a challenge for observations reconstructing CGM characteristics from limited samples, and also indicates that long-term merger assembly history and recent star formation are not the dominant sculptors of the CGM.}, language = {en} } @article{GongLibeskindTempeletal.2019, author = {Gong, Chen Chris and Libeskind, Noam I. and Tempel, Elmo and Guo, Quan and Gottloeber, Stefan and Yepes, Gustavo and Wang, Peng and Sorce, Jenny and Pawlowski, Marcel}, title = {The origin of lopsided satellite galaxy distribution in galaxy pairs}, series = {Monthly notices of the Royal Astronomical Society}, volume = {488}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz1917}, pages = {3100 -- 3108}, year = {2019}, abstract = {It is well known that satellite galaxies are not isotropically distributed among their host galaxies as suggested by most interpretations of the Λ cold dark matter (ΛCDM) model. One type of anisotropy recently detected in the Sloan Digital Sky Survey (and seen when examining the distribution of satellites in the Local Group and in the Centaurus group) is a tendency to be so-called lopsided. Namely, in pairs of galaxies (like Andromeda and the Milky Way) the satellites are more likely to inhabit the region in between the pair, rather than on opposing sides. Although recent studies found a similar set-up when comparing pairs of galaxies in ΛCDM simulations indicating that such a set-up is not inconsistent with ΛCDM, the origin has yet to be explained. Here we examine the origin of such lopsided set-ups by first identifying such distributions in pairs of galaxies in numerical cosmological simulations, and then tracking back the orbital trajectories of satellites (which at z = 0 display the effect). We report two main results: first, the lopsided distribution was stronger in the past and weakens towards z = 0. Secondly, the weakening of the signal is due to the interaction of satellite galaxies with the pair. Finally, we show that the z = 0 signal is driven primarily by satellites that are on first approach, who have yet to experience a 'flyby'. This suggests that the signal seen in the observations is also dominated by dynamically young accretion events.}, language = {en} } @article{ZablBoucheSchroetteretal.2019, author = {Zabl, Johannes and Bouche, Nicolas F. and Schroetter, Ilane and Wendt, Martin and Finley, Hayley and Schaye, Joop and Conseil, Simon and Contini, Thierry and Marino, Raffaella Anna and Mitchell, Peter and Muzahid, Sowgat and Pezzulli, Gabriele and Wisotzki, Lutz}, title = {MusE GAs FLOw and Wind (MEGAFLOW)}, series = {Monthly notices of the Royal Astronomical Society}, volume = {485}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz392}, pages = {1961 -- 1980}, year = {2019}, abstract = {We use the MusE GAs FLOw and Wind (MEGAFLOW) survey to study the kinematics of extended disc-like structures of cold gas around z approximate to 1 star-forming galaxies. The combination of VLT/MUSE and VLT/UVES observations allows us to connect the kinematics of the gas measured through MgII quasar absorption spectroscopy to the kinematics and orientation of the associated galaxies constrained through integral field spectroscopy. Confirming previous results, we find that the galaxy-absorber pairs of the MEGAFLOW survey follow a strong bimodal distribution, consistent with a picture of MgII absorption being predominantly present in outflow cones and extended disc-like structures. This allows us to select a bona-fide sample of galaxy-absorber pairs probing these discs for impact paramometers of 10-70 kpc. We test the hypothesis that the disc-like gas is co-rotating with the galaxy discs, and find that for seven out of nine pairs the absorption velocity shares the sign of the disc velocity, disfavouring random orbits. We further show that the data are roughly consistent with inflow velocities and angular momenta predicted by simulations, and that the corresponding mass accretion rates are sufficient to balance the star formation rates.}, language = {en} } @article{WendtBoucheZabletal.2021, author = {Wendt, Martin and Bouche, Nicolas F. and Zabl, Johannes and Schroetter, Ilane and Muzahid, Sowgat}, title = {MusE GAs FLOw and Wind V. The dust/metallicity-anisotropy of the circum-galactic medium}, series = {Monthly notices of the Royal Astronomical Society}, volume = {502}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stab049}, pages = {3733 -- 3745}, year = {2021}, abstract = {We investigate whether the dust content of the circum-galactic medium (CGM) depends on the location of the quasar sightline with respect to the galaxy major-axis using 13 galaxy-Mg II absorber pairs (9-81 kpc distance) from the MusE GAs FLOw and Wind (MEGAFLOW) survey at 0.4 < z < 1.4. The dust content of the CGM is obtained from [Zn/Fe] using ultraviolet and visual echelle spectrograph data. When a direct measurement of [Zn/Fe] is unavailable, we estimate the dust depletion from a method that consists in solving for the depletion from multiple singly ionized ions (e.g. Mn II, Cr II, and Zn II) since each ion depletes on dust grains at different rates. We find a positive correlation between the azimuthal angle and [Zn/Fe] with a Pearson's gamma = 0.70 +/- 0.14. The sightlines along the major axis show [Zn/Fe] < 0.5, whereas the [Zn/Fe] is > 0.8 along the minor axis. These results suggest that the CGM along the minor axis is on average more metal enriched (by approximate to 1 dex) than the gas located along the major axis of galaxies provided that dust depletion is a proxy for metallicity. This anisotropic distribution is consistent with recent results on outflow and accretion in hydro-dynamical simulations.}, language = {en} } @article{DamleSparreRichteretal.2022, author = {Damle, Mitali and Sparre, Martin and Richter, Philipp and Hani, Maan H. and Nuza, Sebastian and Pfrommer, Christoph and Grand, Robert J. J. and Hoffman, Yehuda and Libeskind, Noam and Sorce, Jenny and Steinmetz, Mathias and Tempel, Elmo and Vogelsberger, Mark and Wang, Peng}, title = {Cold and hot gas distribution around the Milky-Way - M31 system in the HESTIA simulations}, series = {Monthly notices of the royal astronomical society}, volume = {512}, journal = {Monthly notices of the royal astronomical society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac663}, pages = {3717 -- 3737}, year = {2022}, abstract = {Recent observations have revealed remarkable insights into the gas reservoir in the circumgalactic medium (CGM) of galaxy haloes. In this paper, we characterise the gas in the vicinity of Milky Way and Andromeda analogues in the hestia (High resolution Environmental Simulations of The Immediate Area) suite of constrained Local Group (LG) simulations. The hestia suite comprise of a set of three high-resolution arepo-based simulations of the LG, run using the Auriga galaxy formation model. For this paper, we focus only on the 𝑧 = 0 simulation datasets and generate mock skymaps along with a power spectrum analysis to show that the distributions of ions tracing low-temperature gas (H i and Si iii) are more clumpy in comparison to warmer gas tracers (O vi, O vii and O viii). We compare to the spectroscopic CGM observations of M31 and low-redshift galaxies. hestia under-produces the column densities of the M31 observations, but the simulations are consistent with the observations of low-redshift galaxies. A possible explanation for these findings is that the spectroscopic observations of M31 are contaminated by gas residing in the CGM of the Milky Way.}, language = {en} }