@article{KhurooReshiMaliketal.2012, author = {Khuroo, Anzar A. and Reshi, Zafar A. and Malik, Akhtar H. and Weber, Ewald and Rashid, Irfan and Dar, G. H.}, title = {Alien flora of India taxonomic composition, invasion status and biogeographic affiliations}, series = {Biological invasions : unique international journal uniting scientists in the broad field of biological invasions}, volume = {14}, journal = {Biological invasions : unique international journal uniting scientists in the broad field of biological invasions}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {1387-3547}, doi = {10.1007/s10530-011-9981-2}, pages = {99 -- 113}, year = {2012}, abstract = {The wide knowledge gaps in invasion biology research that exist in the developing world are crucial impediments to the scientific management and global policymaking on biological invasions. In an effort to fill such knowledge gaps, we present here an inventory of the alien flora of India, based on systematic reviews and rigorous analyses of research studies (ca. 190) published over the last 120 years (1890-2010 AD), and updated with field records of the last two decades. Currently, the inventory comprises of 1,599 species, belonging to 842 genera in 161 families, and constitutes 8.5\% of the total Indian vascular flora. The three most species-rich families are Asteraceae (134 spp.), Papilionaceae (114 spp.) and Poaceae (106 spp.), and the three largest genera are Eucalyptus (25 spp.), Ipomoea (22 spp.), and Senna (21 spp.). The majority of these species (812) have no report of escaping from cultivation. Of the remaining subset of 787 species, which have either escaped from intentional cultivation, or spread after unintentional introduction, casuals are represented by 57 spp., casual/naturalised by 114 spp., naturalised by 257 spp., naturalised/invasive by 134 spp., and invasive by 225 spp. Biogeographically, more than one-third (35\%) of the alien flora in India has its native ranges in South America, followed by Asia (21\%), Africa (20\%), Europe (11\%), Australia (8\%), North America (4\%); and cryptogenic (1\%). The inventory is expected to serve as the scientific baseline on plant invasions in India, with implications for conservation of global biodiversity.}, language = {en} } @article{HeinzeWernerWeberetal.2015, author = {Heinze, Johannes and Werner, Tony and Weber, Ewald and Rillig, Matthias C. and Joshi, Jasmin Radha}, title = {Soil biota effects on local abundances of three grass species along a land-use gradient}, series = {Oecologia}, volume = {179}, journal = {Oecologia}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-015-3336-0}, pages = {249 -- 259}, year = {2015}, abstract = {Biotic plant-soil interactions and land-use intensity are known to affect plant individual fitness as well as competitiveness and therefore plant-species abundances in communities. Therefore, a link between soil biota and land-use intensity on local abundance of plant species in grasslands can be expected. In two greenhouse experiments, we investigated the effects of soil biota from grassland sites differing in land-use intensity on three grass species that vary in local abundances along this land-use gradient. We were interested in those soil-biota effects that are associated with land-use intensity, and whether these effects act directly or indirectly. Therefore, we grew the three plant species in two separate experiments as single individuals and in mixtures and compared their performance. As single plants, all three grasses showed a similar performance with and without soil biota. In contrast, in mixtures growth of the species in response to the presence or absence of soil biota differed. This resulted in different soil-biota effects that tend to correspond with patterns of species-specific abundances in the field for two of the three species tested. Our results highlight the importance of indirect interactions between plants and soil microorganisms and suggest that combined effects of soil biota and plant-plant interactions are involved in structuring plant communities. In conclusion, our experiments suggest that soil biota may have the potential to alter effects of plant-plant interactions and therefore influence plant-species abundances and diversity in grasslands.}, language = {en} }