@article{FoersterRhede2006, author = {F{\"o}rster, Hans-J{\"u}rgen and Rhede, Dieter}, title = {The Be-Ta-rich granite of Seiffen (eastern Erzgebirge, Germany)}, series = {Neues Jahrbuch f{\"u}r Mineralogie : Abhandlungen}, volume = {182}, journal = {Neues Jahrbuch f{\"u}r Mineralogie : Abhandlungen}, number = {3}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0077-7757}, doi = {10.1127/0077-7757/2006/0055}, pages = {307 -- 321}, year = {2006}, abstract = {The mildly peraluminous granite of Seiffen, in the eastern Erzgebirge of Germany, is exposed by drillcores and associated with an abandoned Sri mine. The granite is of Stefanian age, with overlapping Th-U-total Pb monazite (302 +/- 4 Ma) and K-Ar siderophyllite ages (301 +/- 5 Ma). It is among the youngest granites in the Erzgebirge, emplaced in an extensional setting. The medium-grained, equigranular granite classifies as high-F, low-P Li-mica granite of A-type affinity. It is spatially associated with a high-Si rhyolitic microgranite, documenting the shallow intrusion level of this igneous association. Zircon, monazite-(Ce), and xenotime-(Y) constitute important radioactive accessory minerals in the granite, hosting the major proportions (> 80-90\%) of the bulk-rock budgets of the REE, Y, and Th. A significant percentage of U (40-50\%) may reside within unidentified phases or precipitated along grain boundaries. The most uncommon accessory phase is late-magmatic ytterbian xenotime-(Y) containing up to 11.2 wt\% Yb2O3, in addition to 7.3 wt\% Er2O3 and 7.9 wt\% Dy2O3. The Seiffen granite (epsilon(Nd(300)) = -4.6) is geochemically evolved and rich in Sri (23-63 ppm) and W (11-14 ppm). It contains elevated to high concentrations of incompatible lithophile elements such as F, Li, Ga, Rb, Y, Nb, Cs, REE, Th, and U, thus having much in common chemically with subvolcanic ongonites. The most prominent compositional feature is the strong enrichment (in ppm) in Be (51-55) and Ta (23-28). The granite exhibits flat chondrite-normalized REE patterns (La-N/Lu-N = 1.35-1.48) and a moderate negative Eu anomaly (Eu/Eu* = 0.12-0.13). Indications for alteration-induced, postmagmatic disturbances of initial elemental abundances are weak and mainly relate to the ore-forming elements Sri and U.}, language = {en} } @article{ThomasWebsterRhedeetal.2006, author = {Thomas, Rainer and Webster, J. D. and Rhede, Dieter and Seifert, W. and Rickers, Karen and F{\"o}rster, Hans-J{\"u}rgen and Heinrich, Wilhelm and Davidson, P.}, title = {The transition from peraluminous to peralkaline granitic melts: Evidence from melt inclusions and accessory minerals}, series = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, volume = {91}, journal = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, number = {1-4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0024-4937}, doi = {10.1016/j.lithos.2006.03.013}, pages = {137 -- 149}, year = {2006}, abstract = {Fractional crystallization of peraluminous F- and H(2)O-rich granite magmas progressively enriches the remaining melt with volatiles. We show that, at saturation, the melt may separate into two immiscible conjugate melt fractions, one of the fractions shows increasing peraluminosity and the other increasing peralkalinity. These melt fractions also fractionate the incompatible elements to significantly different degrees. Coexisting melt fractions have differing chemical and physical properties and, due to their high density and viscosity contrasts, they will tend to separate readily from each other. Once separated, each melt fraction evolves independently in response to changing T/P/X conditions and further immiscibility events may occur, each generating its own conjugate pair of melt fractions. The strongly peralkaline melt fractions in particular are very reactive and commonly react until equilibrium is attained. Consequently, the peralkaline melt fraction is commonly preserved only in the isolated melt and mineral inclusions. We demonstrate that the differences between melt fractions that can be seen most clearly in differing melt inclusion compositions are also visible in the composition of the resulting ore-forming and accessory minerals, and are visible on scales from a few micrometers to hundreds of meters.}, language = {en} }