@article{DamaschunDamaschunGastetal.1993, author = {Damaschun, Gregor and Damaschun, Hilde and Gast, Klaus and Misselwitz, Rolf and M{\"u}ller, J{\"u}rgen J. and Pfeil, Wolfgang and Zirwer, Dietrich}, title = {Cold denaturation-induced conformational changes in phosphoglycerate kinase from yeast}, year = {1993}, language = {en} } @article{BarbirzMuellerUetrechtetal.2008, author = {Barbirz, Stefanie and M{\"u}ller, J{\"u}rgen J. and Uetrecht, Charlotte and Clark, Alvin J. and Heinemann, Udo and Seckler, Robert}, title = {Crystal structure of Escherichia coli phage HK620 tailspike : podoviral tailspike endoglycosidase modules are evolutionarily related}, issn = {0950-382X}, year = {2008}, abstract = {Bacteriophage HK620 infects Escherichia coli H and is closely related to Shigella phage Sf6 and Salmonella phage P22. All three Podoviridae recognize and cleave their respective host cell receptor polysaccharide by homotrimeric tailspike proteins. The three proteins exhibit high sequence identity in the 110 residues of their N-terminal particle- binding domains, but no apparent sequence similarity in their major, receptor-binding parts. We have biochemically characterized the receptor-binding part of HK620 tailspike and determined its crystal structure to 1.38 {\AA} resolution. Its major domain is a right-handed parallel ;-helix, as in Sf6 and P22 tailspikes. HK620 tailspike has endo-N- acetylglucosaminidase activity and produces hexasaccharides of an O18A1-type O-antigen. As indicated by the structure of a hexasaccharide complex determined at 1.6 {\AA} resolution, the endoglycosidase-active sites are located intramolecularly, as in P22, and not between subunits, as in Sf6 tailspike. In contrast, the extreme C-terminal domain of HK620 tailspike forms a ;-sandwich, as in Sf6 and unlike P22 tailspike. Despite the different folds, structure-based sequence alignments of the C-termini reveal motifs conserved between the three proteins. We propose that the tailspike genes of P22, Sf6 and HK620 have a common precursor and are not mosaics of unrelated gene fragments.}, language = {en} } @article{MuellerBarbirzHeinleetal.2008, author = {M{\"u}ller, J{\"u}rgen J. and Barbirz, Stefanie and Heinle, Karolin and Freiberg, Alexander and Seckler, Robert and Heinemann, Udo}, title = {An intersubunit active site between supercoiled parallel beta helices in the trimeric tailspike endorhamnosidase of Shigella flexneri phage Sf6}, doi = {10.1016/j.str.2008.01.019}, year = {2008}, abstract = {Sf6 belongs to the Podoviridae family of temperate bacteriophages that infect gram-negative bacteria by insertion of their double-stranded DNA. They attach to their hosts specifically via their tailspike proteins. The 1.25 {\AA} crystal structure of Shigella phage Sf6 tailspike protein (Sf6 TSP) reveals a conserved architecture with a central, right-handed ; helix. In the trimer of Sf6 TSP, the parallel ; helices form a left-handed, coiled;; coil with a pitch of 340 {\AA}. The C-terminal domain consists of a ; sandwich reminiscent of viral capsid proteins. Further crystallographic and biochemical analyses show a Shigella cell wall O-antigen fragment to bind to an endorhamnosidase active site located between two ;-helix subunits each anchoring one catalytic carboxylate. The functionally and structurally related bacteriophage, P22 TSP, lacks sequence identity with Sf6 TSP and has its active sites on single subunits. Sf6 TSP may serve as an example for the evolution of different host specificities on a similar general architecture.}, language = {en} } @phdthesis{Mueller2012, author = {M{\"u}ller, J{\"u}rgen J.}, title = {A real-time in-memory discovery service}, address = {Potsdam}, pages = {XXV, 172 S.}, year = {2012}, language = {en} } @article{BroekerGohlkeMuelleretal.2013, author = {Br{\"o}ker, Nina Kristin and Gohlke, Ulrich and M{\"u}ller, J{\"u}rgen J. and Uetrecht, Charlotte and Heinemann, Udo and Seckler, Robert and Barbirz, Stefanie}, title = {Single amino acid exchange in bacteriophage HK620 tailspike protein results in thousand-fold increase of its oligosaccharide affinity}, series = {Glycobiology}, volume = {23}, journal = {Glycobiology}, number = {1}, publisher = {Oxford Univ. Press}, address = {Cary}, issn = {0959-6658}, doi = {10.1093/glycob/cws126}, pages = {59 -- 68}, year = {2013}, abstract = {Bacteriophage HK620 recognizes and cleaves the O-antigen polysaccharide of Escherichia coli serogroup O18A1 with its tailspike protein (TSP). HK620TSP binds hexasaccharide fragments with low affinity, but single amino acid exchanges generated a set of high-affinity mutants with submicromolar dissociation constants. Isothermal titration calorimetry showed that only small amounts of heat were released upon complex formation via a large number of direct and solvent-mediated hydrogen bonds between carbohydrate and protein. At room temperature, association was both enthalpy- and entropy-driven emphasizing major solvent rearrangements upon complex formation. Crystal structure analysis showed identical protein and sugar conformers in the TSP complexes regardless of their hexasaccharide affinity. Only in one case, a TSP mutant bound a different hexasaccharide conformer. The extended sugar binding site could be dissected in two regions: first, a hydrophobic pocket at the reducing end with minor affinity contributions. Access to this site could be blocked by a single aspartate to asparagine exchange without major loss in hexasaccharide affinity. Second, a region where the specific exchange of glutamate for glutamine created a site for an additional water molecule. Side-chain rearrangements upon sugar binding led to desolvation and additional hydrogen bonding which define this region of the binding site as the high-affinity scaffold.}, language = {en} } @article{SeulMuellerAndresetal.2014, author = {Seul, Anait and M{\"u}ller, J{\"u}rgen J. and Andres, Dorothee and Stettner, Eva and Heinemann, Udo and Seckler, Robert}, title = {Bacteriophage P22 tailspike: structure of the complete protein and function of the interdomain linker}, series = {Acta crystallographica : Section D, Biological crystallography}, volume = {70}, journal = {Acta crystallographica : Section D, Biological crystallography}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1399-0047}, doi = {10.1107/S1399004714002685}, pages = {1336 -- 1345}, year = {2014}, abstract = {Attachment of phages to host cells, followed by phage DNA ejection, represents the first stage of viral infection of bacteria. Salmonella phage P22 has been extensively studied, serving as an experimental model for bacterial infection by phages. P22 engages bacteria by binding to the sugar moiety of lipopolysaccharides using the viral tailspike protein for attachment. While the structures of the N-terminal particle-binding domain and the major receptor-binding domain of the tailspike have been analyzed individually, the three-dimensional organization of the intact protein, including the highly conserved linker region between the two domains, remained unknown. A single amino-acid exchange in the linker sequence made it possible to crystallize the full-length protein. Two crystal structures of the linker region are presented: one attached to the N-terminal domain and the other present within the complete tailspike protein. Both retain their biological function, but the mutated full-length tailspike displays a retarded folding pathway. Fitting of the full-length tailspike into a published cryo-electron microscopy map of the P22 virion requires an elastic distortion of the crystal structure. The conservation of the linker suggests a role in signal transmission from the distal tip of the molecule to the phage head, eventually leading to DNA ejection.}, language = {en} }