@article{SorkauBochBoeddinghausetal.2018, author = {Sorkau, Elisabeth and Boch, Steffen and Boeddinghaus, Runa S. and Bonkowski, Michael and Fischer, Markus and Kandeler, Ellen and Klaus, Valentin H. and Kleinebecker, Till and Marhan, Sven and M{\"u}ller, J{\"o}rg and Prati, Daniel and Schoening, Ingo and Schrumpf, Marion and Weinert, Jan and Oelmann, Yvonne}, title = {The role of soil chemical properties, land use and plant diversity for microbial phosphorus in forest and grassland soils}, series = {Journal of plant nutrition and soil science = Zeitschrift f{\"u}r Pflanzenern{\"a}hrung und Bodenkunde}, volume = {181}, journal = {Journal of plant nutrition and soil science = Zeitschrift f{\"u}r Pflanzenern{\"a}hrung und Bodenkunde}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1436-8730}, doi = {10.1002/jpln.201700082}, pages = {185 -- 197}, year = {2018}, abstract = {Management intensity modifies soil properties, e.g., organic carbon (C-org) concentrations and soil pH with potential feedbacks on plant diversity. These changes might influence microbial P concentrations (P-mic) in soil representing an important component of the Pcycle. Our objectives were to elucidate whether abiotic and biotic variables controlling P-mic concentrations in soil are the same for forests and grasslands, and to assess the effect of region and management on P-mic concentrations in forest and grassland soils as mediated by the controlling variables. In three regions of Germany, Schwabische Alb, Hanich-Dun, and Schorfheide-Chorin, we studied forest and grassland plots (each n=150) differing in plant diversity and land-use intensity. In contrast to controls of microbial biomass carbon (C-mic), P-mic was strongly influenced by soil pH, which in turn affected phosphorus (P) availability and thus microbial Puptake in forest and grassland soils. Furthermore, P-mic concentrations in forest and grassland soils increased with increasing plant diversity. Using structural equation models, we could show that soil C-org is the profound driver of plant diversity effects on P-mic in grasslands. For both forest and grassland, we found regional differences in P-mic attributable to differing environmental conditions (pH, soil moisture). Forest management and tree species showed no effect on P-mic due to a lack of effects on controlling variables (e.g., C-org). We also did not find management effects in grassland soils which might be caused by either compensation of differently directed effects across sites or by legacy effects of former fertilization constraining the relevance of actual practices. We conclude that variables controlling P-mic or C-mic in soil differ in part and that regional differences in controlling variables are more important for P-mic in soil than those induced by management.}, language = {en} } @article{BirkhoferSchoeningAltetal.2012, author = {Birkhofer, Klaus and Sch{\"o}ning, Ingo and Alt, Fabian and Herold, Nadine and Klarner, Bernhard and Maraun, Mark and Marhan, Sven and Oelmann, Yvonne and Wubet, Tesfaye and Yurkov, Andrey and Begerow, Dominik and Berner, Doreen and Buscot, Francois and Daniel, Rolf and Diek{\"o}tter, Tim and Ehnes, Roswitha B. and Erdmann, Georgia and Fischer, Christiane and F{\"o}sel, Baerbel and Groh, Janine and Gutknecht, Jessica and Kandeler, Ellen and Lang, Christa and Lohaus, Gertrud and Meyer, Annabel and Nacke, Heiko and N{\"a}ther, Astrid and Overmann, J{\"o}rg and Polle, Andrea and Pollierer, Melanie M. and Scheu, Stefan and Schloter, Michael and Schulze, Ernst-Detlef and Schulze, Waltraud X. and Weinert, Jan and Weisser, Wolfgang W. and Wolters, Volkmar and Schrumpf, Marion}, title = {General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types}, series = {PLoS one}, volume = {7}, journal = {PLoS one}, number = {8}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0043292}, pages = {8}, year = {2012}, abstract = {Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso-and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types.}, language = {en} } @article{SollySchoeningBochetal.2014, author = {Solly, Emily F. and Sch{\"o}ning, Ingo and Boch, Steffen and Kandeler, Ellen and Marhan, Sven and Michalzik, Beate and M{\"u}ller, J{\"o}rg and Zscheischler, Jakob and Trumbore, Susan E. and Schrumpf, Marion}, title = {Factors controlling decomposition rates of fine root litter in temperate forests and grasslands}, series = {Plant and soil}, volume = {382}, journal = {Plant and soil}, number = {1-2}, publisher = {Springer}, address = {Dordrecht}, issn = {0032-079X}, doi = {10.1007/s11104-014-2151-4}, pages = {203 -- 218}, year = {2014}, abstract = {Fine root decomposition contributes significantly to element cycling in terrestrial ecosystems. However, studies on root decomposition rates and on the factors that potentially influence them are fewer than those on leaf litter decomposition. To study the effects of region and land use intensity on fine root decomposition, we established a large scale study in three German regions with different climate regimes and soil properties. Methods In 150 forest and 150 grassland sites we deployed litterbags (100 mu m mesh size) with standardized litter consisting of fine roots from European beech in forests and from a lowland mesophilous hay meadow in grasslands. In the central study region, we compared decomposition rates of this standardized litter with root litter collected on-site to separate the effect of litter quality from environmental factors. Standardized herbaceous roots in grassland soils decomposed on average significantly faster (24 +/- 6 \% mass loss after 12 months, mean +/- SD) than beech roots in forest soils (12 +/- 4 \%; p < 0.001). Fine root decomposition varied among the three study regions. Land use intensity, in particular N addition, decreased fine root decomposition in grasslands. The initial lignin:N ratio explained 15 \% of the variance in grasslands and 11 \% in forests. Soil moisture, soil temperature, and C:N ratios of soils together explained 34 \% of the variance of the fine root mass loss in grasslands, and 24 \% in forests. Grasslands, which have higher fine root biomass and root turnover compared to forests, also have higher rates of root decomposition. Our results further show that at the regional scale fine root decomposition is influenced by environmental variables such as soil moisture, soil temperature and soil nutrient content. Additional variation is explained by root litter quality.}, language = {en} }