@article{KliemLinForbesetal.2014, author = {Kliem, Bernhard and Lin, J. and Forbes, T. G. and Priest, E. R. and Toeroek, T.}, title = {Catastrophe versus instability for the eruption of a toroadal solar magnetic flux}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {789}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/789/1/46}, pages = {13}, year = {2014}, abstract = {The onset of a solar eruption is formulated here as either a magnetic catastrophe or as an instability. Both start with the same equation of force balance governing the underlying equilibria. Using a toroidal flux rope in an external bipolar or quadrupolar field as a model for the current-carrying flux, we demonstrate the occurrence of a fold catastrophe by loss of equilibrium for several representative evolutionary sequences in the stable domain of parameter space. We verify that this catastrophe and the torus instability occur at the same point; they are thus equivalent descriptions for the onset condition of solar eruptions.}, language = {en} } @article{GoemoeryBalthasarKuckeinetal.2017, author = {G{\"o}m{\"o}ry, Peter and Balthasar, Horst and Kuckein, Christoph and Koza, Julis and Veronig, Astrid M. and Gonz{\´a}lez Manrique, Sergio Javier and Kucera, Ales and Schwartz, Pavol and Hanslmeier, Arnold}, title = {Flare-induced changes of the photospheric magnetic field in a delta-spot deduced from ground-based observations}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {602}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201730644}, pages = {14 -- 27}, year = {2017}, abstract = {Aims. Changes of the magnetic field and the line-of-sight velocities in the photosphere are being reported for an M-class flare that originated at a delta-spot belonging to active region NOAA 11865. Methods. High-resolution ground-based near-infrared spectropolarimetric observations were acquired simultaneously in two photospheric spectral lines, Fe I 10783 angstrom and Si I 10786 angstrom, with the Tenerife Infrared Polarimeter at the Vacuum Tower Telescope (VTT) in Tenerife on 2013 October 15. The observations covered several stages of the M-class flare. Inversions of the full-Stokes vector of both lines were carried out and the results were put into context using (extreme)-ultraviolet filtergrams from the Solar Dynamics Observatory (SDO). Results. The active region showed high flaring activity during the whole observing period. After the M-class flare, the longitudinal magnetic field did not show significant changes along the polarity inversion line (PIL). However, an enhancement of the transverse magnetic field of approximately 550G was found that bridges the PIL and connects umbrae of opposite polarities in the delta-spot. At the same time, a newly formed system of loops appeared co-spatially in the corona as seen in 171 angstrom filtergrams of the Atmospheric Imaging Assembly (AIA) on board SDO. However, we cannot exclude that the magnetic connection between the umbrae already existed in the upper atmosphere before the M-class flare and became visible only later when it was filled with hot plasma. The photospheric Doppler velocities show a persistent upflow pattern along the PIL without significant changes due to the flare. Conclusions. The increase of the transverse component of the magnetic field after the flare together with the newly formed loop system in the corona support recent predictions of flare models and flare observations.}, language = {en} } @article{VeronigPodladchikovaDissaueretal.2018, author = {Veronig, Astrid M. and Podladchikova, Tatiana and Dissauer, Karin and Temmer, Manuela and Seaton, Daniel B. and Long, David and Guo, Jingnan and Vrsnak, Bojan and Harra, Louise and Kliem, Bernhard}, title = {Genesis and Impulsive Evolution of the 2017 September 10 Coronal Mass Ejection}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {868}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aaeac5}, pages = {17}, year = {2018}, abstract = {The X8.2 event of 2017 September 10 provides unique observations to study the genesis, magnetic morphology, and impulsive dynamics of a very fast coronal mass ejection (CME). Combining GOES-16/SUVI and SDO/AIA EUV imagery, we identify a hot (T approximate to 10-15 MK) bright rim around a quickly expanding cavity, embedded inside a much larger CME shell (T approximate to 1-2 MK). The CME shell develops from a dense set of large AR loops ( greater than or similar to 0.5R(s)) and seamlessly evolves into the CME front observed in LASCO C2. The strong lateral overexpansion of the CME shell acts as a piston initiating the fast EUV wave. The hot cavity rim is demonstrated to be a manifestation of the dominantly poloidal flux and frozen-in plasma added to the rising flux rope by magnetic reconnection in the current sheet beneath. The same structure is later observed as the core of the white-light CME, challenging the traditional interpretation of the CME three-part morphology. The large amount of added magnetic flux suggested by these observations explains the extreme accelerations of the radial and lateral expansion of the CME shell and cavity, all reaching values of 5-10 km s(-2). The acceleration peaks occur simultaneously with the first RHESSI 100-300 keV hard X-ray burst of the associated flare, further underlining the importance of the reconnection process for the impulsive CME evolution. Finally, the much higher radial propagation speed of the flux rope in relation to the CME shell causes a distinct deformation of the white-light CME front and shock.}, language = {en} } @article{HassaninKliemSeehafer2016, author = {Hassanin, Alshaimaa and Kliem, Bernhard and Seehafer, Norbert}, title = {Helical kink instability in the confined solar eruption on 2002 May 27}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {337}, journal = {Astronomische Nachrichten = Astronomical notes}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201612446}, pages = {1082 -- 1089}, year = {2016}, language = {en} } @article{LeeWhiteLiuetal.2018, author = {Lee, Jeongwoo and White, Stephen M. and Liu, Chang and Kliem, Bernhard and Masuda, Satoshi}, title = {Magnetic Structure of a Composite Solar Microwave Burst}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {856}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aaadbc}, pages = {10}, year = {2018}, abstract = {A composite flare consisting of an impulsive flare SOL2015-06-21T01:42 (GOES class M2.0) and a more gradual, long-duration flare SOL2015-06-21T02:36 (M2.6) from NOAA Active Region 12371, is studied using observations with the Nobeyama Radioheliograph (NoRH) and the Solar Dynamics Observatory (SDO). While composite flares are defined by their characteristic time profiles, in this paper we present imaging observations that demonstrate the spatial relationship of the two flares and allow us to address the nature of the evolution of a composite event. The NoRH maps show that the first flare is confined not only in time, but also in space, as evidenced by the stagnation of ribbon separation and the stationarity of the microwave source. The NoRH also detected another microwave source during the second flare, emerging from a different location where thermal plasma is so depleted that accelerated electrons could survive longer against Coulomb collisional loss. The AIA 131 angstrom images show that a sigmoidal EUV hot channel developed after the first flare and erupted before the second flare. We suggest that this eruption removed the high-lying flux to let the separatrix dome underneath reconnect with neighboring flux and the second microwave burst follow. This scenario explains how the first microwave burst is related to the much-delayed second microwave burst in this composite event.}, language = {en} } @article{KliemSuvanBallegooijenetal.2013, author = {Kliem, Bernhard and Su, Y. N. and van Ballegooijen, A. A. and DeLuca, E. E.}, title = {Magnetohydrodynamic modeling of the solar eruption on 2010 APRIL 8}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {779}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/779/2/129}, pages = {18}, year = {2013}, abstract = {The structure of the coronal magnetic field prior to eruptive processes and the conditions for the onset of eruption are important issues that can be addressed through studying the magnetohydrodynamic (MHD) stability and evolution of nonlinear force-free field (NLFFF) models. This paper uses data-constrained NLFFF models of a solar active region (AR) that erupted on 2010 April 8 as initial conditions in MHD simulations. These models, constructed with the techniques of flux rope insertion and magnetofrictional relaxation (MFR), include a stable, an approximately marginally stable, and an unstable configuration. The simulations confirm previous related results of MFR runs, particularly that stable flux rope equilibria represent key features of the observed pre-eruption coronal structure very well, and that there is a limiting value of the axial flux in the rope for the existence of stable NLFFF equilibria. The specific limiting value is located within a tighter range, due to the sharper discrimination between stability and instability by the MHD description. The MHD treatment of the eruptive configuration yields a very good agreement with a number of observed features, like the strongly inclined initial rise path and the close temporal association between the coronal mass ejection and the onset of flare reconnection. Minor differences occur in the velocity of flare ribbon expansion and in the further evolution of the inclination; these can be eliminated through refined simulations. We suggest that the slingshot effect of horizontally bent flux in the source region of eruptions can contribute significantly to the inclination of the rise direction. Finally, we demonstrate that the onset criterion, formulated in terms of a threshold value for the axial flux in the rope, corresponds very well to the threshold of the torus instability in the considered AR.}, language = {en} } @misc{SuKliemvanBallegooijenetal.2012, author = {Su, Yingna and Kliem, Bernhard and van Ballegooijen, Adriaan and Deluca, Edward}, title = {Numerical simulations of the CME on 2010 April 8}, series = {Solar and Astrophysical Dynamos and Magnetic Activity}, journal = {Solar and Astrophysical Dynamos and Magnetic Activity}, number = {674}, issn = {1866-8372}, doi = {10.25932/publishup-41488}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414887}, pages = {575 -- 576}, year = {2012}, abstract = {We present 3D zero-beta ideal MHD simulations of the solar flare/CME event that occurred in Active Region 11060 on 2010 April 8. The initial magnetic configurations of the two simulations are stable nonlinear force-free field and unstable magnetic field models constructed by Su et al. (2011) using the flux rope insertion method. The MHD simulations confirm that the stable model relaxes to a stable equilibrium, while the unstable model erupts as a CME. Comparisons between observations and MHD simulations of the CME are also presented.}, language = {en} } @article{LiuLiuXuetal.2013, author = {Liu, Rui and Liu, Chang and Xu, Yan and Liu, Wei and Kliem, Bernhard and Wang, Haimin}, title = {Observation of a moretown wave and wave-filament interactions associated with the renowned X9 flare on 1990 May 24}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {773}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/773/2/166}, pages = {13}, year = {2013}, abstract = {Using Big Bear Solar Observatory film data recently digitized at NJIT, we investigate a Moreton wave associated with an X9 flare on 1990 May 24, as well as its interactions with four filaments F1-F4 located close to the flaring region. The interaction yields interesting insight into physical properties of both the wave and the filaments. The first clear Moreton wavefront appears at the flaring-region periphery at approximately the same time as the peak of a microwave burst and the first of two gamma-ray peaks. The wavefront propagates at different speeds ranging from 1500-2600 km s(-1) in different directions, reaching as far as 600 Mm away from the flaring site. Sequential chromospheric brightenings are observed ahead of the Moreton wavefront. A slower diffuse front at 300-600 km s(-1) is observed to trail the fast Moreton wavefront about one minute after the onset. The Moreton wave decelerates to similar to 550 km s(-1) as it sweeps through F1. The wave passage results in F1's oscillation which is featured by similar to 1 mHz signals with coherent Fourier phases over the filament, the activation of F3 and F4 followed by gradual recovery, but no disturbance in F2. Different height and magnetic environment together may account for the distinct responses of the filaments to the wave passage. The wavefront bulges at F4, whose spine is oriented perpendicular to the upcoming wavefront. The deformation of the wavefront is suggested to be due to both the forward inclination of the wavefront and the enhancement of the local Alfven speed within the filament channel.}, language = {en} } @article{GaoWangLinetal.2014, author = {Gao, Guan-Nan and Wang, Min and Lin, Jun and Wu, Ning and Tan, Cheng-Ming and Kliem, Bernhard and Su, Yang}, title = {Radio observations of the fine structure inside a post-CME current sheet}, series = {Research in astronomy and astrophysics : a publication of the Chinese Astronomical Society and National Astronomical Observatories, Chinese Academy of Sciences}, volume = {14}, journal = {Research in astronomy and astrophysics : a publication of the Chinese Astronomical Society and National Astronomical Observatories, Chinese Academy of Sciences}, number = {7}, publisher = {Chinese Astronomical Society and National Astronomical Observatories, Chinese Academy of Sciences}, address = {Beijing}, issn = {1674-4527}, doi = {10.1088/1674-4527/14/7/006}, pages = {843 -- 854}, year = {2014}, abstract = {A solar radio burst was observed in a coronal mass ejection/flare event by the Solar Broadband Radio Spectrometer at the Huairou Solar Observing Station on 2004 December 1. The data exhibited various patterns of plasma motions, suggestive of the interaction between sunward moving plasmoids and the flare loop system during the impulsive phase of the event. In addition to the radio data, the associated white-light, H alpha, extreme ultraviolet light, and soft and hard X-rays were also studied.}, language = {en} } @article{LiuKliemToeroeketal.2012, author = {Liu, Rui and Kliem, Bernhard and Toeroek, Tibor and Liu, Chang and Titov, Viacheslav S. and Lionello, Roberto and Linker, Jon A. and Wang, Haimin}, title = {Slow rise and partial eruption of a double-decker filament. I. observations and interpretation}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {756}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/756/1/59}, pages = {14}, year = {2012}, abstract = {We study an active-region dextral filament that was composed of two branches separated in height by about 13 Mm, as inferred from three-dimensional reconstruction by combining SDO and STEREO-B observations. This "double-decker" configuration sustained for days before the upper branch erupted with a GOES-class M1.0 flare on 2010 August 7. Analyzing this evolution, we obtain the following main results. (1) During the hours before the eruption, filament threads within the lower branch were observed to intermittently brighten up, lift upward, and then merge with the upper branch. The merging process contributed magnetic flux and current to the upper branch, resulting in its quasi-static ascent. (2) This transfer might serve as the key mechanism for the upper branch to lose equilibrium by reaching the limiting flux that can be stably held down by the overlying field or by reaching the threshold of the torus instability. (3) The erupting branch first straightened from a reverse S shape that followed the polarity inversion line and then writhed into a forward S shape. This shows a transfer of left-handed helicity in a sequence of writhe-twist-writhe. The fact that the initial writhe is converted into the twist of the flux rope excludes the helical kink instability as the trigger process of the eruption, but supports the occurrence of the instability in the main phase, which is indeed indicated by the very strong writhing motion. (4) A hard X-ray sigmoid, likely of coronal origin, formed in the gap between the two original filament branches in the impulsive phase of the associated flare. This supports a model of transient sigmoids forming in the vertical flare current sheet. (5) Left-handed magnetic helicity is inferred for both branches of the dextral filament. (6) Two types of force-free magnetic configurations are compatible with the data, a double flux rope equilibrium and a single flux rope situated above a loop arcade.}, language = {en} }