@book{WaetzoldtGiese2015, author = {W{\"a}tzoldt, Sebastian and Giese, Holger}, title = {Modeling collaborations in self-adaptive systems of systems}, number = {96}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-324-4}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-73036}, publisher = {Universit{\"a}t Potsdam}, pages = {72}, year = {2015}, abstract = {An increasing demand on functionality and flexibility leads to an integration of beforehand isolated system solutions building a so-called System of Systems (SoS). Furthermore, the overall SoS should be adaptive to react on changing requirements and environmental conditions. Due SoS are composed of different independent systems that may join or leave the overall SoS at arbitrary point in times, the SoS structure varies during the systems lifetime and the overall SoS behavior emerges from the capabilities of the contained subsystems. In such complex system ensembles new demands of understanding the interaction among subsystems, the coupling of shared system knowledge and the influence of local adaptation strategies to the overall resulting system behavior arise. In this report, we formulate research questions with the focus of modeling interactions between system parts inside a SoS. Furthermore, we define our notion of important system types and terms by retrieving the current state of the art from literature. Having a common understanding of SoS, we discuss a set of typical SoS characteristics and derive general requirements for a collaboration modeling language. Additionally, we retrieve a broad spectrum of real scenarios and frameworks from literature and discuss how these scenarios cope with different characteristics of SoS. Finally, we discuss the state of the art for existing modeling languages that cope with collaborations for different system types such as SoS.}, language = {en} } @article{VogelGiese2014, author = {Vogel, Thomas and Giese, Holger}, title = {Model-Driven engineering of self-adaptive software with EUREMA}, series = {ACM transactions on autonomous and adaptive systems}, volume = {8}, journal = {ACM transactions on autonomous and adaptive systems}, number = {4}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {1556-4665}, doi = {10.1145/2555612}, pages = {33}, year = {2014}, abstract = {The development of self-adaptive software requires the engineering of an adaptation engine that controls the underlying adaptable software by feedback loops. The engine often describes the adaptation by runtime models representing the adaptable software and by activities such as analysis and planning that use these models. To systematically address the interplay between runtime models and adaptation activities, runtime megamodels have been proposed. A runtime megamodel is a specific model capturing runtime models and adaptation activities. In this article, we go one step further and present an executable modeling language for ExecUtable RuntimE MegAmodels (EUREMA) that eases the development of adaptation engines by following a model-driven engineering approach. We provide a domain-specific modeling language and a runtime interpreter for adaptation engines, in particular feedback loops. Megamodels are kept alive at runtime and by interpreting them, they are directly executed to run feedback loops. Additionally, they can be dynamically adjusted to adapt feedback loops. Thus, EUREMA supports development by making feedback loops explicit at a higher level of abstraction and it enables solutions where multiple feedback loops interact or operate on top of each other and self-adaptation co-exists with offline adaptation for evolution.}, language = {en} } @book{VogelGiese2013, author = {Vogel, Thomas and Giese, Holger}, title = {Model-driven engineering of adaptation engines for self-adaptive software : executable runtime megamodels}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-227-8}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63825}, publisher = {Universit{\"a}t Potsdam}, pages = {vi, 59}, year = {2013}, abstract = {The development of self-adaptive software requires the engineering of an adaptation engine that controls and adapts the underlying adaptable software by means of feedback loops. The adaptation engine often describes the adaptation by using runtime models representing relevant aspects of the adaptable software and particular activities such as analysis and planning that operate on these runtime models. To systematically address the interplay between runtime models and adaptation activities in adaptation engines, runtime megamodels have been proposed for self-adaptive software. A runtime megamodel is a specific runtime model whose elements are runtime models and adaptation activities. Thus, a megamodel captures the interplay between multiple models and between models and activities as well as the activation of the activities. In this article, we go one step further and present a modeling language for ExecUtable RuntimE MegAmodels (EUREMA) that considerably eases the development of adaptation engines by following a model-driven engineering approach. We provide a domain-specific modeling language and a runtime interpreter for adaptation engines, in particular for feedback loops. Megamodels are kept explicit and alive at runtime and by interpreting them, they are directly executed to run feedback loops. Additionally, they can be dynamically adjusted to adapt feedback loops. Thus, EUREMA supports development by making feedback loops, their runtime models, and adaptation activities explicit at a higher level of abstraction. Moreover, it enables complex solutions where multiple feedback loops interact or even operate on top of each other. Finally, it leverages the co-existence of self-adaptation and off-line adaptation for evolution.}, language = {en} } @article{SeibelNeumannGiese2010, author = {Seibel, Andreas and Neumann, Stefan and Giese, Holger}, title = {Dynamic hierarchical mega models : comprehensive traceability and its efficient maintenance}, issn = {1619-1366}, doi = {10.1007/s10270-009-0146-z}, year = {2010}, abstract = {In the world of model-driven engineering (MDE) support for traceability and maintenance of traceability information is essential. On the one hand, classical traceability approaches for MDE address this need by supporting automated creation of traceability information on the model element level. On the other hand, global model management approaches manually capture traceability information on the model level. However, there is currently no approach that supports comprehensive traceability, comprising traceability information on both levels, and efficient maintenance of traceability information, which requires a high-degree of automation and scalability. In this article, we present a comprehensive traceability approach that combines classical traceability approaches for MDE and global model management in form of dynamic hierarchical mega models. We further integrate efficient maintenance of traceability information based on top of dynamic hierarchical mega models. The proposed approach is further outlined by using an industrial case study and by presenting an implementation of the concepts in form of a prototype.}, language = {en} } @book{NeumannGiese2013, author = {Neumann, Stefan and Giese, Holger}, title = {Scalable compatibility for embedded real-time components via language progressive timed automata}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-226-1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63853}, publisher = {Universit{\"a}t Potsdam}, pages = {vi, 67}, year = {2013}, abstract = {The proper composition of independently developed components of an embedded real- time system is complicated due to the fact that besides the functional behavior also the non-functional properties and in particular the timing have to be compatible. Nowadays related compatibility problems have to be addressed in a cumbersome integration and configuration phase at the end of the development process, that in the worst case may fail. Therefore, a number of formal approaches have been developed, which try to guide the upfront decomposition of the embedded real-time system into components such that integration problems related to timing properties can be excluded and that suitable configurations can be found. However, the proposed solutions require a number of strong assumptions that can be hardly fulfilled or the required analysis does not scale well. In this paper, we present an approach based on timed automata that can provide the required guarantees for the later integration without strong assumptions, which are difficult to match in practice. The approach provides a modular reasoning scheme that permits to establish the required guarantees for the integration employing only local checks, which therefore also scales. It is also possible to determine potential configuration settings by means of timed game synthesis.}, language = {de} } @book{MeinelPlattnerDoellneretal.2014, author = {Meinel, Christoph and Plattner, Hasso and D{\"o}llner, J{\"u}rgen Roland Friedrich and Weske, Mathias and Polze, Andreas and Hirschfeld, Robert and Naumann, Felix and Giese, Holger and Baudisch, Patrick}, title = {Proceedings of the 7th Ph.D. Retreat of the HPI Research School on Service-oriented Systems Engineering}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-273-5}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63490}, publisher = {Universit{\"a}t Potsdam}, pages = {ii, 218}, year = {2014}, abstract = {Design and Implementation of service-oriented architectures imposes a huge number of research questions from the fields of software engineering, system analysis and modeling, adaptability, and application integration. Component orientation and web services are two approaches for design and realization of complex web-based system. Both approaches allow for dynamic application adaptation as well as integration of enterprise application. Commonly used technologies, such as J2EE and .NET, form de facto standards for the realization of complex distributed systems. Evolution of component systems has lead to web services and service-based architectures. This has been manifested in a multitude of industry standards and initiatives such as XML, WSDL UDDI, SOAP, etc. All these achievements lead to a new and promising paradigm in IT systems engineering which proposes to design complex software solutions as collaboration of contractually defined software services. Service-Oriented Systems Engineering represents a symbiosis of best practices in object-orientation, component-based development, distributed computing, and business process management. It provides integration of business and IT concerns. The annual Ph.D. Retreat of the Research School provides each member the opportunity to present his/her current state of their research and to give an outline of a prospective Ph.D. thesis. Due to the interdisciplinary structure of the Research Scholl, this technical report covers a wide range of research topics. These include but are not limited to: Self-Adaptive Service-Oriented Systems, Operating System Support for Service-Oriented Systems, Architecture and Modeling of Service-Oriented Systems, Adaptive Process Management, Services Composition and Workflow Planning, Security Engineering of Service-Based IT Systems, Quantitative Analysis and Optimization of Service-Oriented Systems, Service-Oriented Systems in 3D Computer Graphics sowie Service-Oriented Geoinformatics.}, language = {en} } @book{MaximovaGieseKrause2017, author = {Maximova, Maria and Giese, Holger and Krause, Christian}, title = {Probabilistic timed graph transformation systems}, number = {118}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-405-0}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-397055}, publisher = {Universit{\"a}t Potsdam}, pages = {34}, year = {2017}, abstract = {Today, software has become an intrinsic part of complex distributed embedded real-time systems. The next generation of embedded real-time systems will interconnect the today unconnected systems via complex software parts and the service-oriented paradigm. Therefore besides timed behavior and probabilistic behaviour also structure dynamics, where the architecture can be subject to changes at run-time, e.g. when dynamic binding of service end-points is employed or complex collaborations are established dynamically, is required. However, a modeling and analysis approach that combines all these necessary aspects does not exist so far. To fill the identified gap, we propose Probabilistic Timed Graph Transformation Systems (PTGTSs) as a high-level description language that supports all the necessary aspects of structure dynamics, timed behavior, and probabilistic behavior. We introduce the formal model of PTGTSs in this paper and present a mapping of models with finite state spaces to probabilistic timed automata (PTA) that allows to use the PRISM model checker to analyze PTGTS models with respect to PTCTL properties.}, language = {en} } @book{KrauseGiese2012, author = {Krause, Christian and Giese, Holger}, title = {Quantitative modeling and analysis of service-oriented real-time systems using interval probabilistic timed automata}, publisher = {Universit{\"a}tsverlah Potsdam}, address = {Potsdam}, isbn = {978-3-86956-171-4}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57845}, publisher = {Universit{\"a}t Potsdam}, pages = {45}, year = {2012}, abstract = {One of the key challenges in service-oriented systems engineering is the prediction and assurance of non-functional properties, such as the reliability and the availability of composite interorganizational services. Such systems are often characterized by a variety of inherent uncertainties, which must be addressed in the modeling and the analysis approach. The different relevant types of uncertainties can be categorized into (1) epistemic uncertainties due to incomplete knowledge and (2) randomization as explicitly used in protocols or as a result of physical processes. In this report, we study a probabilistic timed model which allows us to quantitatively reason about nonfunctional properties for a restricted class of service-oriented real-time systems using formal methods. To properly motivate the choice for the used approach, we devise a requirements catalogue for the modeling and the analysis of probabilistic real-time systems with uncertainties and provide evidence that the uncertainties of type (1) and (2) in the targeted systems have a major impact on the used models and require distinguished analysis approaches. The formal model we use in this report are Interval Probabilistic Timed Automata (IPTA). Based on the outlined requirements, we give evidence that this model provides both enough expressiveness for a realistic and modular specifiation of the targeted class of systems, and suitable formal methods for analyzing properties, such as safety and reliability properties in a quantitative manner. As technical means for the quantitative analysis, we build on probabilistic model checking, specifically on probabilistic time-bounded reachability analysis and computation of expected reachability rewards and costs. To carry out the quantitative analysis using probabilistic model checking, we developed an extension of the Prism tool for modeling and analyzing IPTA. Our extension of Prism introduces a means for modeling probabilistic uncertainty in the form of probability intervals, as required for IPTA. For analyzing IPTA, our Prism extension moreover adds support for probabilistic reachability checking and computation of expected rewards and costs. We discuss the performance of our extended version of Prism and compare the interval-based IPTA approach to models with fixed probabilities.}, language = {en} } @article{HenklerOberthuerGieseetal.2011, author = {Henkler, Stefan and Oberthuer, Simon and Giese, Holger and Seibel, Andreas}, title = {Model-driven runtime resource predictions for advanced mechatronic systems with dynamic data structures}, series = {Computer systems science and engineering}, volume = {26}, journal = {Computer systems science and engineering}, number = {6}, publisher = {IOP Publ. Ltd.}, address = {Leicester}, issn = {0267-6192}, pages = {505 -- 518}, year = {2011}, abstract = {The next generation of advanced mechatronic systems is expected to enhance their functionality and improve their performance by context-dependent behavior. Therefore, these systems require to represent information about their complex environment and changing sets of collaboration partners internally. This requirement is in contrast to the usually assumed static structures of embedded systems. In this paper, we present a model-driven approach which overcomes this situation by supporting dynamic data structures while still guaranteeing that valid worst-case execution times can be derived. It supports a flexible resource manager which avoids to operate with the prohibitive coarse worst-case boundaries but instead supports to run applications in different profiles which guarantee different resource requirements and put unused resources in a profile at other applications' disposal. By supporting the proper estimation of worst case execution time (WCET) and worst case number of iteration (WCNI) at runtime, we can further support to create new profiles, add or remove them at runtime in order to minimize the over-approximation of the resource consumption resulting from the dynamic data structures required for the outlined class of advanced systems.}, language = {en} } @book{HebigGieseBatoulisetal.2015, author = {Hebig, Regina and Giese, Holger and Batoulis, Kimon and Langer, Philipp and Zamani Farahani, Armin and Yao, Gary and Wolowyk, Mychajlo}, title = {Development of AUTOSAR standard documents at Carmeq GmbH}, number = {92}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-317-6}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-71535}, publisher = {Universit{\"a}t Potsdam}, pages = {52}, year = {2015}, abstract = {This report documents the captured MDE history of Carmeq GmbH, in context of the project Evolution of MDE Settings in Practice. The goal of the project is the elicitation of MDE approaches and their evolution.}, language = {en} }