@article{ZengPankratovFalketal.2015, author = {Zeng, Ting and Pankratov, Dmitry and Falk, Magnus and Leimk{\"u}hler, Silke and Shleev, Sergey and Wollenberger, Ursula}, title = {Miniature direct electron transfer based sulphite/oxygen enzymatic fuel cells}, series = {Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics}, volume = {66}, journal = {Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics}, publisher = {Elsevier}, address = {Oxford}, issn = {0956-5663}, doi = {10.1016/j.bios.2014.10.080}, pages = {39 -- 42}, year = {2015}, abstract = {A direct electron transfer (DET) based sulphite/oxygen biofuel cell is reported that utilises human sulphite oxidase (hSOx) and Myrothecium verrucaria bilirubin oxidase (MvBOx) and nanostructured gold electrodes. For bioanode construction, the nanostructured gold microelectrodes were further modified with 3,3'-dithiodipropionic acid di(N-hydroxysuccinimide ester) to which polyethylene imine was covalently attached. hSOx was adsorbed onto this chemically modified nanostructured electrode with high surface loading of electroactive enzyme and in presence of sulphite high anodic bioelectrocatalytic currents were generated with an onset potential of 0.05 V vs. NHE. The biocathode contained MyBOx directly adsorbed to the deposited gold nanoparticles for cathodic oxygen reduction starting at 0.71 V vs. NHE. Both enzyme electrodes were integrated to a DET-type biofuel cell. Power densities of 8 and 1 mu W cm(-2) were achieved at 0.15 V and 0.45 V of cell voltages, respectively, with the membrane based biodevices under aerobic conditions. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{ZengLeimkuehlerWollenbergeretal.2017, author = {Zeng, Ting and Leimk{\"u}hler, Silke and Wollenberger, Ulla and Fourmond, Vincent}, title = {Transient Catalytic Voltammetry of Sulfite Oxidase Reveals Rate Limiting Conformational Changes}, series = {Journal of the American Chemical Society}, volume = {139}, journal = {Journal of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/jacs.7b05480}, pages = {11559 -- 11567}, year = {2017}, abstract = {Sulfite oxidases are metalloenzymes that oxidize sulfite to sulfate at a molybdenum active site. In vertebrate sulfite oxidases, the electrons generated at the Mo center are transferred to an external electron acceptor via a heme domain, which can adopt two conformations: a "closed" conformation, suitable for internal electron transfer, and an "open" conformation suitable for intermolecular electron transfer. This conformational change is an integral part of the catalytic cycle. Sulfite oxidases have been wired to electrode surfaces, but their immobilization leads to a significant decrease in their catalytic activity, raising the question of the occurrence of the conformational change when the enzyme is on an electrode. We recorded and quantitatively modeled for the first time the transient response of the catalytic cycle of human sulfite oxidase immobilized on an electrode. We show that conformational changes still occur on the electrode, but at a lower rate than in solution, which is the reason for the decrease in activity of sulfite oxidases upon immobilization.}, language = {en} } @article{ZengLeimkuehlerKoetzetal.2015, author = {Zeng, Ting and Leimk{\"u}hler, Silke and Koetz, Joachim and Wollenberger, Ursula}, title = {Effective Electrochemistry of Human Sulfite Oxidase Immobilized on Quantum-Dots-Modified Indium Tin Oxide Electrode}, series = {ACS applied materials \& interfaces}, volume = {7}, journal = {ACS applied materials \& interfaces}, number = {38}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.5b06665}, pages = {21487 -- 21494}, year = {2015}, abstract = {The bioelectrocatalytic sulfite oxidation by human sulfite oxidase (hSO) on indium tin oxide (ITO) is reported, which is facilitated by functionalizing of the electrode surface with polyethylenimine (PEI)-entrapped CdS nanoparticles and enzyme. hSO was assembled onto the electrode with a high surface loading of electroactive enzyme. In the presence of sulfite but without additional mediators, a high bioelectrocatalytic current was generated. Reference experiments with only PEI showed direct electron transfer and catalytic activity of hSO, but these were less pronounced. The application of the polyelectrolyte-entrapped quantum dots (QDs) on ITO electrodes provides a compatible surface for enzyme binding with promotion of electron transfer. Variations of the buffer solution conditions, e.g., ionic strength, pH, viscosity, and the effect of oxygen, were studied in order to understand intramolecular and heterogeneous electron transfer from hSO to the electrode. The results are consistent with a model derived for the enzyme by using flash photolysis in solution and spectroelectrochemistry and molecular dynamic simulations of hSO on monolayer-modified gold electrodes. Moreover, for the first time a photoelectrochemical electrode involving immobilized hSO is demonstrated where photoexcitation of the CdS/hSO-modified electrode lead to an enhanced generation of bioelectrocatalytic currents upon sulfite addition. Oxidation starts already at the redox potential of the electron transfer domain of hSO and is greatly increased by application of a small overpotential to the CdS/hSO-modified ITO.}, language = {en} } @article{ZengFrascaRumschoetteletal.2016, author = {Zeng, Ting and Frasca, Stefano and Rumsch{\"o}ttel, Jens and Koetz, Joachim and Leimk{\"u}hler, Silke and Wollenberger, Ursula}, title = {Role of Conductive Nanoparticles in the Direct Unmediated Bioelectrocatalysis of Immobilized Sulfite Oxidase}, series = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, volume = {28}, journal = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1040-0397}, doi = {10.1002/elan.201600246}, pages = {2303 -- 2310}, year = {2016}, language = {en} } @phdthesis{Zeng2017, author = {Zeng, Ting}, title = {Nanoparticles promoted biocatalysis}, school = {Universit{\"a}t Potsdam}, pages = {99}, year = {2017}, language = {en} }