@article{vonWebskyHasanReichetzederetal.2018, author = {von Websky, Karoline and Hasan, Ahmed Abdallah Abdalrahman Mohamed and Reichetzeder, Christoph and Tsuprykov, Oleg and Hocher, Berthold}, title = {Impact of vitamin D on pregnancy-related disorders and on offspring outcome}, series = {The Journal of Steroid Biochemistry and Molecular Biology}, volume = {180}, journal = {The Journal of Steroid Biochemistry and Molecular Biology}, publisher = {Elsevier}, address = {Oxford}, issn = {0960-0760}, doi = {10.1016/j.jsbmb.2017.11.008}, pages = {51 -- 64}, year = {2018}, abstract = {Observational studies from all over the world continue to find high prevalence rates of vitamin D insufficiency and deficiency in many populations, including pregnant women. Beyond its classical function as a regulator of calcium and phosphate metabolism, vitamin D elicits numerous effects in the human body. Current evidence highlights a vital role of vitamin D in mammalian gestation. During pregnancy, adaptations in maternal vitamin D metabolism lead to a physiologic increase of vitamin D levels, mainly because of an increased renal production, although other potential sources like the placenta are being discussed. A sufficient supply of mother and child with calcium and vitamin D during pregnancy ensures a healthy bone development of the fetus, whereas lack of either of these nutrients can lead to the development of rickets in the child. Moreover, vitamin D insufficiency during pregnancy has consistently been associated with adverse maternal and neonatal pregnancy outcomes. In multitudinous studies, low maternal vitamin D status was associated with a higher risk for pre-eclampsia, gestational diabetes mellitus and other gestational diseases. Likewise, several negative consequences for the fetus have been reported, including fetal growth restriction, increased risk of preterm birth and a changed susceptibility for later-life diseases. However, study results are diverging and causality has not been proven so far. Meta-analyses on the relationship between maternal vitamin D status and pregnancy outcomes revealed a wide heterogeneity of studied populations and the applied methodology in vitamin D assessment. Until today, clinical guidelines for supplementation cannot be based on high-quality evidence and it is not clear if the required intake for pregnant women differs from non-pregnant women. Long-term safety data of vitamin D supplementation in pregnant women has not been established and overdosing of vitamin D might have unfavorable effects, especially in mothers and newborns with mutations of genes involved in vitamin D metabolism. Reliable data from large observational and interventional randomized control trials are urgently needed as a basis for any detailed and safe recommendations for supplementation in the general population and, most importantly, in pregnant women. This is of utmost importance, as ensuring a sufficient vitamin D-supply of mother and child implies a great potential for the prevention of birth complications and development of diseases.}, language = {en} } @article{TsuprykovAndoReichetzederetal.2016, author = {Tsuprykov, Oleg and Ando, Ryotaro and Reichetzeder, Christoph and von Websky, Karoline and Antonenko, Viktoriia and Sharkovska, Yuliya and Chaykovska, Lyubov and Rahnenfuehrer, Jan and Hasan, Ahmed Abdallah Abdalrahman Mohamed and Tammen, Harald and Alter, Markus L. and Klein, Thomas and Ueda, Seiji and Yamagishi, Sho-ichi and Okuda, Seiya and Hocher, Berthold}, title = {The dipeptidyl peptidase inhibitor linagliptin and the angiotensin II receptor blocker telmisartan show renal benefit by different pathways in rats with 5/6 nephrectomy}, series = {Kidney international : official journal of the International Society of Nephrology}, volume = {89}, journal = {Kidney international : official journal of the International Society of Nephrology}, publisher = {Nature Publ. Group}, address = {New York}, issn = {0085-2538}, doi = {10.1016/j.kint.2016.01.016}, pages = {1049 -- 1061}, year = {2016}, abstract = {Dipeptidyl peptidase (DPP)-4 inhibitors delay chronic kidney disease (CKD) progression in experimental diabetic nephropathy in a glucose-independent manner. Here we compared the effects of the DPP-4 inhibitor linagliptin versus telmisartan in preventing CKD progression in non-diabetic rats with 5/6 nephrectomy. Animals were allocated to 1 of 4 groups: sham operated plus placebo; 5/6 nephrectomy plus placebo; 5/6 nephrectomy plus linagliptin; and 5/6 nephrectomy plus telmisartan. Interstitial fibrosis was significantly decreased by 48\% with linagliptin but a non-significant 24\% with telmisartan versus placebo. The urine albumin-to-creatinine ratio was significantly decreased by 66\% with linagliptin and 92\% with telmisartan versus placebo. Blood pressure was significantly lowered by telmisartan, but it was not affected by linagliptin. As shown by mass spectrometry, the number of altered peptide signals for linagliptin in plasma was 552 and 320 in the kidney. For telmisartan, there were 108 peptide changes in plasma and 363 in the kidney versus placebo. Linagliptin up-regulated peptides derived from collagen type I, apolipoprotein C1, and heterogeneous nuclear ribonucleoproteins A2/B1, a potential downstream target of atrial natriuretic peptide, whereas telmisartan up-regulated angiotensin II. A second study was conducted to confirm these findings in 5/6 nephrectomy wild-type and genetically deficient DPP-4 rats treated with linagliptin or placebo. Linagliptin therapy in wild-type rats was as effective as DPP-4 genetic deficiency in terms of albuminuria reduction. Thus, linagliptin showed comparable efficacy to telmisartan in preventing CKD progression in non-diabetic rats with 5/6 nephrectomy. However, the underlying pathways seem to be different. Copyright (C) 2016, International Society of Nephrology. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).}, language = {en} } @article{ReichetzedervonWebskyTsuprykovetal.2017, author = {Reichetzeder, Christoph and von Websky, Karoline and Tsuprykov, Oleg and Samarin, Azadeh Mohagheghi and Falke, Luise Gabriele and Putra, Sulistyo Emantoko Dwi and Hasan, Ahmed Abdallah Abdalrahman Mohamed and Antonenko, Viktoriia and Curato, Caterina and Rippmann, Joerg and Klein, Thomas and Hocher, Berthold}, title = {Head-to-head comparison of structurally unrelated dipeptidyl peptidase 4 inhibitors in the setting of renal ischemia reperfusion injury}, series = {British journal of pharmacology : journal of The British Pharmacological Society}, volume = {174}, journal = {British journal of pharmacology : journal of The British Pharmacological Society}, publisher = {Wiley}, address = {Hoboken}, issn = {0007-1188}, doi = {10.1111/bph.13822}, pages = {2273 -- 2286}, year = {2017}, abstract = {BACKGROUND AND PURPOSE Results regarding protective effects of dipeptidyl peptidase 4 (DPP4) inhibitors in renal ischaemia-reperfusion injury (IRI) are conflicting. Here we have compared structurally unrelated DPP4 inhibitors in a model of renal IRI. EXPERIMENTAL APPROACH IRI was induced in uninephrectomizedmale rats by renal artery clamping for 30 min. The shamgroup was uninephrectomized but not subjected to IRI. DPP4 inhibitors or vehicle were given p. o. once daily on three consecutive days prior to IRI: linagliptin (1.5 mg.kg(-1).day(-1)), vildagliptin (8mg.kg(-1).day(-1)) and sitagliptin (30 mg.kg(-1).day(-1)). An additional group received sitagliptin until study end (before IRI: 30 mg.kg(-1).day(-1); after IRI: 15mg.kg(-1).day(-1)). KEY RESULTS Plasma-active glucagon-like peptide type 1 (GLP(-1)) increased threefold to fourfold in all DPP4 inhibitor groups 24 h after IRI. Plasma cystatin C, a marker of GFR, peaked 48 h after IRI. Compared with the placebo group, DPP4 inhibition did not reduce increased plasma cystatin C levels. DPP4 inhibitors ameliorated histopathologically assessed tubular damage with varying degrees of drug-specific efficacies. Renal osteopontin expression was uniformly reduced by all DPP4 inhibitors. IRI-related increased renal cytokine expression was not decreased by DPP4 inhibition. Renal DPP4 activity at study end was significantly inhibited in the linagliptin group, but only numerically reduced in the prolonged/dose-adjusted sitagliptin group. Active GLP(-1) plasma levels at study end were increased only in the prolonged/dose-adjusted sitagliptin treatment group. CONCLUSIONS AND IMPLICATIONS In rats with renal IRI, DPP4 inhibition did not alter plasma cystatin C, a marker of glomerular function, but may protect against tubular damage.}, language = {en} } @article{LiLuTsuprykovetal.2018, author = {Li, Jian and Lu, Yong-Ping and Tsuprykov, Oleg and Hasan, Ahmed Abdallah Abdalrahman Mohamed and Reichetzeder, Christoph and Tian, Mei and Zhang, Xiao Li and Zhang, Qin and Sun, Guo-Ying and Guo, Jingli and Gaballa, Mohamed Mahmoud Salem Ahmed and Peng, Xiao-Ning and Lin, Ge and Hocher, Berthold}, title = {Folate treatment of pregnant rat dams abolishes metabolic effects in female offspring induced by a paternal pre-conception unhealthy diet}, series = {Diabetologia : journal of the European Association for the Study of Diabetes (EASD)}, volume = {61}, journal = {Diabetologia : journal of the European Association for the Study of Diabetes (EASD)}, number = {8}, publisher = {Springer}, address = {New York}, issn = {0012-186X}, doi = {10.1007/s00125-018-4635-x}, pages = {1862 -- 1876}, year = {2018}, abstract = {Aims/hypothesis Paternal high-fat diet prior to mating programmes impaired glucose tolerance in female offspring. We examined whether the metabolic consequences in offspring could be abolished by folate treatment of either the male rats before mating or the corresponding female rats during pregnancy. Methods Male F0 rats were fed either control diet or high-fat, high-sucrose and high-salt diet (HFSSD), with or without folate, before mating. Male rats were mated with control-diet-fed dams. After mating, the F0 dams were fed control diet with or without folate during pregnancy.}, language = {en} } @article{HasanvonWebskyReichetzederetal.2019, author = {Hasan, Ahmed Abdallah Abdalrahman Mohamed and von Websky, Karoline and Reichetzeder, Christoph and Tsuprykov, Oleg and Gaballa, Mohamed Mahmoud Salem Ahmed and Guo, Jingli and Zeng, Shufei and Delic, Denis and Tammen, Harald and Klein, Thomas and Kleuser, Burkhard and Hocher, Berthold}, title = {Mechanisms of GLP-1 receptor-independent renoprotective effects of the dipeptidyl peptidase type 4 inhibitor linagliptin in GLP-1 receptor knockout mice with 5/6 nephrectomy}, series = {Kidney international : official journal of the International Society of Nephrology}, volume = {95}, journal = {Kidney international : official journal of the International Society of Nephrology}, number = {6}, publisher = {Elsevier}, address = {New York}, issn = {0085-2538}, doi = {10.1016/j.kint.2019.01.010}, pages = {1373 -- 1388}, year = {2019}, abstract = {Dipeptidyl peptidase type 4 (DPP-4) inhibitors were reported to have beneficial effects in experimental models of chronic kidney disease. The underlying mechanisms are not completely understood. However, these effects could be mediated via the glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP1R) pathway. Here we investigated the renal effects of the DPP-4 inhibitor linagliptin in Glp1r-/- knock out and wild-type mice with 5/6 nephrectomy (5/6Nx). Mice were allocated to groups: sham + wild type + placebo; 5/6Nx+ wild type + placebo; 5/6Nx+ wild type + linagliptin; sham + knock out+ placebo; 5/6Nx + knock out+ placebo; 5/6Nx + knock out+ linagliptin. 5/6Nx caused the development of renal interstitial fibrosis, significantly increased plasma cystatin C and creatinine levels and suppressed renal gelatinase/collagenase, matrix metalloproteinase-1 and -13 activities; effects counteracted by linagliptin treatment in wildtype and Glp1r-/- mice. Two hundred ninety-eight proteomics signals were differentially regulated in kidneys among the groups, with 150 signals specific to linagliptin treatment as shown by mass spectrometry. Treatment significantly upregulated three peptides derived from collagen alpha-1(I), thymosin beta 4 and heterogeneous nuclear ribonucleoprotein Al (HNRNPA1) and significantly downregulated one peptide derived from Y box binding protein-1 (YB-1). The proteomics results were further confirmed using western blot and immunofluorescence microscopy. Also, 5/6Nx led to significant up-regulation of renal transforming growth factor-beta 1 and pSMAD3 expression in wild type mice and linagliptin significantly counteracted this up-regulation in wild type and GIplr-/- mice. Thus, the renoprotective effects of linagliptin cannot solely be attributed to the GLP-1/GLP1R pathway, highlighting the importance of other signaling pathways (collagen I homeostasis, HNRNPA1,YB-1,thymosin beta 4 and TGF-beta 1) influenced by DPP-4 inhibition.}, language = {en} } @misc{HasanHocher2017, author = {Hasan, Ahmed Abdallah Abdalrahman Mohamed and Hocher, Berthold}, title = {Role of soluble and membrane-bound dipeptidyl peptidase-4 in diabetic nephropathy}, series = {Journal of Molecular Endocrinology}, volume = {59}, journal = {Journal of Molecular Endocrinology}, publisher = {Bioscientifica LTD}, address = {Bristol}, issn = {0952-5041}, doi = {10.1530/JME-17-0005}, pages = {R1 -- R10}, year = {2017}, abstract = {Diabetic nephropathy is one of the most frequent, devastating and costly complications of diabetes. The available therapeutic approaches are limited. Dipeptidyl peptidase type 4 (DPP-4) inhibitors represent a new class of glucose-lowering drugs that might also have reno-protective properties. DPP-4 exists in two forms: a plasma membranebound form and a soluble form, and can exert many biological actions mainly through its peptidase activity and interaction with extracellular matrix components. The kidneys have the highest DPP-4 expression level in mammalians. DPP-4 expression and urinary activity are up-regulated in diabetic nephropathy, highlighting its role as a potential target to manage diabetic nephropathy. Preclinical animal studies and some clinical data suggest that DPP-4 inhibitors decrease the progression of diabetic nephropathy in a blood pressure-and glucose-independent manner. Many studies reported that these reno-protective effects could be due to increased half-life of DPP-4 substrates such as glucagon-like peptide-1 (GLP-1) and stromal derived factor-1 alpha (SDF-1a). However, the underlying mechanisms are far from being completely understood and clearly need further investigations.}, language = {en} } @phdthesis{Hasan2018, author = {Hasan, Ahmed Abdallah Abdalrahman Mohamed}, title = {GLP-1 receptor-independent mechanisms of DPP-4 inhibition on renal disease progression}, school = {Universit{\"a}t Potsdam}, pages = {113}, year = {2018}, language = {en} } @article{GlosseFegerMutigetal.2018, author = {Glosse, Philipp and Feger, Martina and Mutig, Kerim and Chen, Hong and Hirche, Frank and Hasan, Ahmed Abdallah Abdalrahman Mohamed and Gaballa, Mohamed Mahmoud Salem Ahmed and Hocher, Berthold and Lang, Florian and F{\"o}ller, Michael}, title = {AMP-activated kinase is a regulator of fibroblast growth factor 23 production}, series = {Kidney international : official journal of the International Society of Nephrology}, volume = {94}, journal = {Kidney international : official journal of the International Society of Nephrology}, number = {3}, publisher = {Elsevier}, address = {New York}, issn = {0085-2538}, doi = {10.1016/j.kint.2018.03.006}, pages = {491 -- 501}, year = {2018}, abstract = {Fibroblast growth factor 23 (FGF23) is a proteohormone regulating renal phosphate transport and vitamin D metabolism as well as inducing left heart hypertrophy. FGF23-deficient mice suffer from severe tissue calcification, accelerated aging and a myriad of aging-associated diseases. Bone cells produce FGF23 upon store-operated calcium ion entry (SOCE) through the calcium selective ion channel Orai1. AMP-activated kinase (AMPK) is a powerful energy sensor helping cells survive states of energy deficiency, and AMPK down-regulates Orai1. Here we investigated the role of AMPK in FGF23 production. Fgf23 gene transcription was analyzed by qRT-PCR and SOCE by fluorescence optics in UMR106 osteoblast-like cells while the serum FGF23 concentration and phosphate metabolism were assessed in AMPKa1-knockout and wild-type mice. The AMPK activator, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) down-regulated, whereas the AMPK inhibitor, dorsomorphin dihydrochloride (compound C) and AMPK gene silencing induced Fgf23 transcription. AICAR decreased membrane abundance of Orai1 and SOCE. SOCE inhibitors lowered Fgf23 gene expression induced by AMPK inhibition. AMPKa1-knockout mice had a higher serum FGF23 concentration compared to wild-type mice. Thus, AMPK participates in the regulation of FGF23 production in vitro and in vivo. The inhibitory effect of AMPK on FGF23 production is at least in part mediated by Orai1-involving SOCE.}, language = {en} } @misc{DwiPutraReichetzederHasanetal.2020, author = {Dwi Putra, Sulistyo Emantoko and Reichetzeder, Christoph and Hasan, Ahmed Abdallah Abdalrahman Mohamed and Slowinski, Torsten and Chu, Chang and Kr{\"a}mer, Bernhard K. and Kleuser, Burkhard and Hocher, Berthold}, title = {Being born large for gestational age is associated with increased global placental DNA methylation}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51628}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516289}, pages = {12}, year = {2020}, abstract = {Being born small (SGA) or large for gestational age (LGA) is associated with adverse birth outcomes and metabolic diseases in later life of the offspring. It is known that aberrations in growth during gestation are related to altered placental function. Placental function is regulated by epigenetic mechanisms such as DNA methylation. Several studies in recent years have demonstrated associations between altered patterns of DNA methylation and adverse birth outcomes. However, larger studies that reliably investigated global DNA methylation are lacking. The aim of this study was to characterize global placental DNA methylation in relationship to size for gestational age. Global DNA methylation was assessed in 1023 placental samples by LC-MS/MS. LGA offspring displayed significantly higher global placental DNA methylation compared to appropriate for gestational age (AGA; p<0.001). ANCOVA analyses adjusted for known factors impacting on DNA methylation demonstrated an independent association between placental global DNA methylation and LGA births (p<0.001). Tertile stratification according to global placental DNA methylation levels revealed a significantly higher frequency of LGA births in the third tertile. Furthermore, a multiple logistic regression analysis corrected for known factors influencing birth weight highlighted an independent positive association between global placental DNA methylation and the frequency of LGA births (p=0.001).}, language = {en} } @article{DwiPutraReichetzederHasanetal.2020, author = {Dwi Putra, Sulistyo Emantoko and Reichetzeder, Christoph and Hasan, Ahmed Abdallah Abdalrahman Mohamed and Slowinski, Torsten and Chu, Chang and Kr{\"a}mer, Bernhard K. and Kleuser, Burkhard and Hocher, Berthold}, title = {Being born large for gestational age is associated with increased global placental DNA methylation}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-57725-0}, pages = {1 -- 10}, year = {2020}, abstract = {Being born small (SGA) or large for gestational age (LGA) is associated with adverse birth outcomes and metabolic diseases in later life of the offspring. It is known that aberrations in growth during gestation are related to altered placental function. Placental function is regulated by epigenetic mechanisms such as DNA methylation. Several studies in recent years have demonstrated associations between altered patterns of DNA methylation and adverse birth outcomes. However, larger studies that reliably investigated global DNA methylation are lacking. The aim of this study was to characterize global placental DNA methylation in relationship to size for gestational age. Global DNA methylation was assessed in 1023 placental samples by LC-MS/MS. LGA offspring displayed significantly higher global placental DNA methylation compared to appropriate for gestational age (AGA; p<0.001). ANCOVA analyses adjusted for known factors impacting on DNA methylation demonstrated an independent association between placental global DNA methylation and LGA births (p<0.001). Tertile stratification according to global placental DNA methylation levels revealed a significantly higher frequency of LGA births in the third tertile. Furthermore, a multiple logistic regression analysis corrected for known factors influencing birth weight highlighted an independent positive association between global placental DNA methylation and the frequency of LGA births (p=0.001).}, language = {en} }