@article{deBritoKuhlickeMarx2020, author = {de Brito, Mariana Madruga and Kuhlicke, Christian and Marx, Andreas}, title = {Near-real-time drought impact assessment}, series = {Environmental research letters}, volume = {15}, journal = {Environmental research letters}, number = {10}, publisher = {IOP Publ.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/aba4ca}, pages = {11}, year = {2020}, abstract = {Contemporary drought impact assessments have been constrained due to data availability, leading to an incomplete representation of impact trends. To address this, we present a novel method for the comprehensive and near-real-time monitoring of drought socio-economic impacts based on media reports. We tested its application using the case of the exceptional 2018/19 German drought. By employing text mining techniques, 4839 impact statements were identified, relating to livestock, agriculture, forestry, fires, recreation, energy and transport sectors. An accuracy of 95.6\% was obtained for their automatic classification. Furthermore, high levels of performance in terms of spatial and temporal precision were found when validating our results against independent data (e.g. soil moisture, average precipitation, population interest in droughts, crop yield and forest fire statistics). The findings highlight the applicability of media data for rapidly and accurately monitoring the propagation of drought consequences over time and space. We anticipate our method to be used as a starting point for an impact-based early warning system.}, language = {en} } @article{HuberKrummenauerPenaOrtizetal.2020, author = {Huber, Veronika and Krummenauer, Linda and Pe{\~n}a-Ortiz, Cristina and Lange, Stefan and Gasparrini, Antonio and Vicedo-Cabrera, Ana Maria and Garcia-Herrera, Ricardo and Frieler, Katja}, title = {Temperature-related excess mortality in German cities at 2 °C and higher degrees of global warming}, series = {Environmental Research}, volume = {186}, journal = {Environmental Research}, publisher = {Elsevier}, address = {San Diego, California}, issn = {0013-9351}, doi = {10.1016/j.envres.2020.109447}, pages = {1 -- 10}, year = {2020}, abstract = {Background: Investigating future changes in temperature-related mortality as a function of global mean temperature (GMT) rise allows for the evaluation of policy-relevant climate change targets. So far, only few studies have taken this approach, and, in particular, no such assessments exist for Germany, the most populated country of Europe. Methods: We assess temperature-related mortality in 12 major German cities based on daily time-series of all-cause mortality and daily mean temperatures in the period 1993-2015, using distributed-lag non-linear models in a two-stage design. Resulting risk functions are applied to estimate excess mortality in terms of GMT rise relative to pre-industrial levels, assuming no change in demographics or population vulnerability. Results: In the observational period, cold contributes stronger to temperature-related mortality than heat, with overall attributable fractions of 5.49\% (95\%CI: 3.82-7.19) and 0.81\% (95\%CI: 0.72-0.89), respectively. Future projections indicate that this pattern could be reversed under progressing global warming, with heat-related mortality starting to exceed cold-related mortality at 3 degrees C or higher GMT rise. Across cities, projected net increases in total temperature-related mortality were 0.45\% (95\%CI: -0.02-1.06) at 3 degrees C, 1.53\% (95\%CI: 0.96-2.06) at 4 degrees C, and 2.88\% (95\%CI: 1.60-4.10) at 5 degrees C, compared to today's warming level of 1 degrees C. By contrast, no significant difference was found between projected total temperature-related mortality at 2 degrees C versus 1 degrees C of GMT rise. Conclusions: Our results can inform current adaptation policies aimed at buffering the health risks from increased heat exposure under climate change. They also allow for the evaluation of global mitigation efforts in terms of local health benefits in some of Germany's most populated cities.}, language = {en} } @article{LaudanZoellerThieken2020, author = {Laudan, Jonas and Z{\"o}ller, Gert and Thieken, Annegret}, title = {Flash floods versus river floods}, series = {Natural Hazards and Earth System Sciences}, volume = {20}, journal = {Natural Hazards and Earth System Sciences}, publisher = {European Geophysical Society}, address = {Katlenburg-Lindau}, issn = {1684-9981}, doi = {10.5194/nhess-20-999-2020}, pages = {999 -- 1023}, year = {2020}, abstract = {River floods are among the most damaging natural hazards that frequently occur in Germany. Flooding causes high economic losses and impacts many residents. In 2016, several southern German municipalities were hit by flash floods after unexpectedly severe heavy rainfall, while in 2013 widespread river flooding had occurred. This study investigates and compares the psychological impacts of river floods and flash floods and potential consequences for precautionary behaviour. Data were collected using computer-aided telephone interviews that were conducted among flood-affected households around 9 months after each damaging event. This study applies Bayesian statistics and negative binomial regressions to test the suitability of psychological indicators to predict the precaution motivation of individuals. The results show that it is not the particular flood type but rather the severity and local impacts of the event that are crucial for the different, and potentially negative, impacts on mental health. According to the used data, however, predictions of the individual precaution motivation should not be based on the derived psychological indicators - i.e. coping appraisal, threat appraisal, burden and evasion - since their explanatory power was generally low and results are, for the most part, non-significant. Only burden reveals a significant positive relation to planned precaution regarding weak flash floods. In contrast to weak flash floods and river floods, the perceived threat of strong flash floods is significantly lower although feelings of burden and lower coping appraisals are more pronounced. Further research is needed to better include psychological assessment procedures and to focus on alternative data sources regarding floods and the connected precaution motivation of affected residents.}, language = {en} } @article{OttoGoepfertThieken2021, author = {Otto, Antje and G{\"o}pfert, Christian and Thieken, Annegret}, title = {Are cities prepared for climate change?}, series = {Mitigation and adaptation strategies for global change : an international journal devoted to scientific, engineering, socio-economic and policy responses to environmental change}, volume = {26}, journal = {Mitigation and adaptation strategies for global change : an international journal devoted to scientific, engineering, socio-economic and policy responses to environmental change}, number = {8}, publisher = {Springer}, address = {Dordrecht}, issn = {1381-2386}, doi = {10.1007/s11027-021-09971-4}, pages = {25}, year = {2021}, abstract = {Cities can be severely affected by climate change. Hence, many of them have started to develop climate adaptation strategies or implement measures to help prepare for the challenges it will present. This study aims to provide an overview of climate adaptation in 104 German cities. While existing studies on adaptation tracking rely heavily on self-reported data or the mere existence of adaptation plans, we applied the broader concept of adaptation readiness, considering five factors and a total of twelve different indicators, when making our assessments. We clustered the cities depending on the contribution of these factors to the overall adaptation readiness index and grouped them according to their total score and cluster affiliations. This resulted in us identifying four groups of cities. First, a pioneering group comprises twelve (mainly big) cities with more than 500,000 inhabitants, which showed high scores for all five factors of adaptation readiness. Second, a set of 36 active cities, which follow different strategies on how to deal with climate adaptation. Third, a group of 28 cities showed considerably less activity toward climate adaptation, while a fourth set of 28 mostly small cities (with between 50,000 and 99,999 inhabitants) scored the lowest. We consider this final group to be pursuing a 'wait-and-see' approach. Since the city size correlates with the adaptation readiness index, we recommend policymakers introduce funding schemes that focus on supporting small cities, to help them prepare for the impact of a changing climate.}, language = {en} } @article{OttoKernHauptetal.2021, author = {Otto, Antje and Kern, Kristine and Haupt, Wolfgang and Eckersley, Peter and Thieken, Annegret}, title = {Ranking local climate policy}, series = {Climatic change : an interdisciplinary, international journal devoted to the description, causes and implications of climatic change}, volume = {167}, journal = {Climatic change : an interdisciplinary, international journal devoted to the description, causes and implications of climatic change}, number = {1-2}, publisher = {Springer}, address = {Dordrecht}, issn = {0165-0009}, doi = {10.1007/s10584-021-03142-9}, pages = {23}, year = {2021}, abstract = {Climate mitigation and climate adaptation are crucial tasks for urban areas and can involve synergies as well as trade-offs. However, few studies have examined how mitigation and adaptation efforts relate to each other in a large number of differently sized cities, and therefore we know little about whether forerunners in mitigation are also leading in adaptation or if cities tend to focus on just one policy field. This article develops an internationally applicable approach to rank cities on climate policy that incorporates multiple indicators related to (1) local commitments on mitigation and adaptation, (2) urban mitigation and adaptation plans and (3) climate adaptation and mitigation ambitions. We apply this method to rank 104 differently sized German cities and identify six clusters: climate policy leaders, climate adaptation leaders, climate mitigation leaders, climate policy followers, climate policy latecomers and climate policy laggards. The article seeks explanations for particular cities' positions and shows that coping with climate change in a balanced way on a high level depends on structural factors, in particular city size, the pathways of local climate policies since the 1990s and funding programmes for both climate mitigation and adaptation.}, language = {en} } @article{SamprognaMohorThiekenKorup2021, author = {Samprogna Mohor, Guilherme and Thieken, Annegret and Korup, Oliver}, title = {Residential flood loss estimated from Bayesian multilevel models}, series = {Natural Hazards and Earth System Sciences}, volume = {21}, journal = {Natural Hazards and Earth System Sciences}, publisher = {European Geophysical Society}, address = {Katlenburg-Lindau}, issn = {2195-9269}, doi = {10.5194/nhess-21-1599-2021}, pages = {1599 -- 1614}, year = {2021}, abstract = {Models for the predictions of monetary losses from floods mainly blend data deemed to represent a single flood type and region. Moreover, these approaches largely ignore indicators of preparedness and how predictors may vary between regions and events, challenging the transferability of flood loss models. We use a flood loss database of 1812 German flood-affected households to explore how Bayesian multilevel models can estimate normalised flood damage stratified by event, region, or flood process type. Multilevel models acknowledge natural groups in the data and allow each group to learn from others. We obtain posterior estimates that differ between flood types, with credibly varying influences of water depth, contamination, duration, implementation of property-level precautionary measures, insurance, and previous flood experience; these influences overlap across most events or regions, however. We infer that the underlying damaging processes of distinct flood types deserve further attention. Each reported flood loss and affected region involved mixed flood types, likely explaining the uncertainty in the coefficients. Our results emphasise the need to consider flood types as an important step towards applying flood loss models elsewhere. We argue that failing to do so may unduly generalise the model and systematically bias loss estimations from empirical data.}, language = {en} } @article{WebberLischeidSommeretal.2020, author = {Webber, Heidi and Lischeid, Gunnar and Sommer, Michael and Finger, Robert and Nendel, Claas and Gaiser, Thomas and Ewert, Frank}, title = {No perfect storm for crop yield failure in Germany}, series = {Environmental research letters}, volume = {15}, journal = {Environmental research letters}, number = {10}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/aba2a4}, pages = {14}, year = {2020}, abstract = {Large-scale crop yield failures are increasingly associated with food price spikes and food insecurity and are a large source of income risk for farmers. While the evidence linking extreme weather to yield failures is clear, consensus on the broader set of weather drivers and conditions responsible for recent yield failures is lacking. We investigate this for the case of four major crops in Germany over the past 20 years using a combination of machine learning and process-based modelling. Our results confirm that years associated with widespread yield failures across crops were generally associated with severe drought, such as in 2018 and to a lesser extent 2003. However, for years with more localized yield failures and large differences in spatial patterns of yield failures between crops, no single driver or combination of drivers was identified. Relatively large residuals of unexplained variation likely indicate the importance of non-weather related factors, such as management (pest, weed and nutrient management and possible interactions with weather) explaining yield failures. Models to inform adaptation planning at farm, market or policy levels are here suggested to require consideration of cumulative resource capture and use, as well as effects of extreme events, the latter largely missing in process-based models. However, increasingly novel combinations of weather events under climate change may limit the extent to which data driven methods can replace process-based models in risk assessments.}, language = {en} } @article{WutzlerHudsonThieken2022, author = {Wutzler, Bianca and Hudson, Paul and Thieken, Annegret}, title = {Adaptation strategies of flood-damaged businesses in Germany}, series = {Frontiers in Water}, journal = {Frontiers in Water}, publisher = {Frontiers Media SA}, address = {Lausanne, Schweiz}, issn = {2624-9375}, doi = {10.3389/frwa.2022.932061}, pages = {13}, year = {2022}, abstract = {Flood risk management in Germany follows an integrative approach in which both private households and businesses can make an important contribution to reducing flood damage by implementing property-level adaptation measures. While the flood adaptation behavior of private households has already been widely researched, comparatively less attention has been paid to the adaptation strategies of businesses. However, their ability to cope with flood risk plays an important role in the social and economic development of a flood-prone region. Therefore, using quantitative survey data, this study aims to identify different strategies and adaptation drivers of 557 businesses damaged by a riverine flood in 2013 and 104 businesses damaged by pluvial or flash floods between 2014 and 2017. Our results indicate that a low perceived self-efficacy may be an important factor that can reduce the motivation of businesses to adapt to flood risk. Furthermore, property-owners tended to act more proactively than tenants. In addition, high experience with previous flood events and low perceived response costs could strengthen proactive adaptation behavior. These findings should be considered in business-tailored risk communication.}, language = {en} }