@misc{JackischAngermannAllroggenetal.2017, author = {Jackisch, Conrad and Angermann, Lisa and Allroggen, Niklas and Sprenger, Matthias and Blume, Theresa and Tronicke, Jens and Zehe, Erwin}, title = {Form and function in hillslope hydrology}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {665}, issn = {1866-8372}, doi = {10.25932/publishup-41918}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419188}, pages = {27}, year = {2017}, abstract = {The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR) methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a cascade of 2-D time-lapse GPR "trenches". We show that the shift between activated and non-activated state of the flow paths is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point-scale samples are the basis for sub-scale structure inference. At the plot and hillslope scale 3-D and 2-D time-lapse GPR applications are successfully employed as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form and function under active conditions provides the means to localize and characterize the structures (this study) and the hydrological processes (companion study Angermann et al., 2017, this issue).}, language = {en} } @misc{WienhoeferGermerLindenmaieretal.2009, author = {Wienh{\"o}fer, Jan and Germer, Kai and Lindenmaier, Falk and F{\"a}rber, Arne and Zehe, Erwin}, title = {Applied tracers for the observation of subsurface stormflow at the hillslope scale}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45246}, year = {2009}, abstract = {Rain fall-runoff response in temperate humid headwater catchments is mainly controlled by hydrolo gical processes at the hillslope scale. Applied tracer experiments with fluore scent dye and salt tracers are well known tools in groundwater studies at the large scale and vadose zone studies at the plot scale, where they provide a means to characterise subsurface flow. We extend this approach to the hillslope scale to investigate saturated and unsaturated flow path s concertedly at a forested hill slope in the Austrian Alps. Dye staining experiments at the plot scale revealed that crack s and soil pipe s function as preferential flow path s in the fine-textured soils of the study area, and these preferenti al flow structures were active in fast subsurface transport of tracers at the hillslope scale. Breakthrough curves obtained under steady flow conditions could be fitted well to a one-dimensional convection-dispersion model. Under natural rain fall a positive correlation of tracer concentrations to the transient flows was observed. The results of this study demon strate qualitative and quantitative effects of preferential flow feature s on subsurface stormflow in a temperate humid headwater catchment. It turn s out that , at the hill slope scale, the interaction s of structures and processes are intrinsically complex, which implies that attempts to model such a hillslope satisfactorily require detailed investigation s of effective structures and parameters at the scale of interest.}, language = {en} }