@article{KamjunkeGaedkeTitteletal.2004, author = {Kamjunke, Norbert and Gaedke, Ursula and Tittel, J{\"o}rg and Weithoff, Guntram and Bell, Elanor M.}, title = {Strong vertical differences in the plankton composition of an extremely acidic lake}, year = {2004}, abstract = {Vertical differences in food web structure were examined in an extremely acidic, iron-rich mining lake in Germany (Lake 111; pH 2.6, total Fe 150mg L-1) during the period of stratification. We tested whether or not the seasonal variation of the plankton composition is less pronounced than the differences observed over depth. The lake was strongly stratified in summer, and concentrations of dissolved organic carbon and inorganic carbon were consistently low in the epilimnion but high in the hypolimnion. Oxygen concentrations declined in the hypolimnion but were always above 2mg L-1. Light attenuation did not change over depth and time and was governed by dissolved ferric iron. The plankton consisted mainly of single-celled and filamentous bacteria, the two mixotrophic flagellates Chlamydomonas sp. and Ochromonas sp., the two rotifer species Elosa worallii and Cephalodella hoodi, and Heliozoa as top predators. We observed very few ciliates and rhizopods, and no heterotrophic flagellates, crustaceans or fish. Ochromonas sp., bacterial filaments, Elosa and Heliozoa dominated in the epilimnion whereas Chlamydomonas sp., single-celled bacteria and Cephalodella dominated in the hypolimnion. Single-celled bacteria were controlled by Ochromonas sp. whereas the lack of large consumers favoured a high proportion of bacterial filaments. The primarily phototrophic Chlamydomas sp. was limited by light and CO2 and may have been reduced due to grazing by Ochromonas sp. in the epilimnion. The distribution of the primarily phagotrophic Ochromonas sp. and of the animals seemed to be controlled by prey availability. Differences in the plankton composition were much higher between the epilimnion and hypolimnion than within a particular stratum over time. The food web in Lake 111 was extremely species-poor enabling no functional redundancy. This was attributed to the direct exclusion of species by the harsh environmental conditions and presumably enforced by competitive exclusion. The latter was promoted by the low diversity at the first trophic level which, in turn, was attributed to relatively stable growth conditions and the independence of resource availability (inorganic carbon and light) from algal density. Ecological theory suggests that low functional redundancy promotes low stability in ecosystem processes which was not supported by our data.}, language = {en} } @article{TittelKamjunke2004, author = {Tittel, J{\"o}rg and Kamjunke, Norbert}, title = {Metabolism of dissolved organic carbon by planktonic bacteria and mixotrophic algae in lake neutralisation experiments}, year = {2004}, abstract = {1. Lakes formed in mining pits often contain high concentrations of dissolved ferric iron and sulphate (e.g. 2 and 16 mmol L)1, respectively) and the pH is buffered between 2.5 and 3.5. Efforts to neutralise their water are based on the stimulation of lake internal, bacterial iron- and sulphate reduction. Electron donors may be supplied by organic carbon compounds or indirectly by enhancement of primary production. Here, we investigated the function of mixotrophic algae, which can potentially supplement or deplete the organic carbon pool, in the carbon metabolism and alkalinity budget of an acidic mining lake. 2. Two weeks after organic substrates had been added in a large in situ mesocosm of 30 m diameter, a bloom of Chlamydomonas occurred, reaching a biovolume of 80 mm3 L)1. Growth experiments using filtered lake water showed that the alga reduced the overall dissolved organic carbon (DOC) concentration despite significant photosynthetic activity. However, when Chlamydomonas were grown together with natural bacterioplankton, net DOC consumption did not increase. 3. Uptake experiments using [14C]-glucose indicated that bacteria dominated glucose uptake and remineralisation. Therefore, the DOC leached in the water column was processed mainly by planktonic bacteria. Leached DOC must be regarded as loss, not transferred by larger organisms to the sediment, where reduction processes take place. 4. From phytoplankton biomass and production 2 years after fertilisation we estimated that pelagic photosynthesis does not supply an electron donor capacity capable of reducing more than 2\% of actual stock of acidity per year. We estimated that only the benthic primary production was in a range to compensate for ongoing inputs of iron and sulphate.}, language = {en} }