@article{CattiauxFradonKuliketal.2016, author = {Cattiaux, Patrick and Fradon, Myriam and Kulik, Alexei M. and Roelly, Sylvie}, title = {Long time behavior of stochastic hard ball systems}, series = {Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability}, volume = {22}, journal = {Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability}, publisher = {International Statistical Institute}, address = {Voorburg}, issn = {1350-7265}, doi = {10.3150/14-BEJ672}, pages = {681 -- 710}, year = {2016}, abstract = {We study the long time behavior of a system of n = 2, 3 Brownian hard balls, living in R-d for d >= 2, submitted to a mutual attraction and to elastic collisions.}, language = {en} } @unpublished{CattiauxFradonKuliketal.2013, author = {Cattiaux, Patrick and Fradon, Myriam and Kulik, Alexei Michajlovič and Roelly, Sylvie}, title = {Long time behavior of stochastic hard ball systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68388}, year = {2013}, abstract = {We study the long time behavior of a system of two or three Brownian hard balls living in the Euclidean space of dimension at least two, submitted to a mutual attraction and to elastic collisions.}, language = {en} } @book{ChampagnatRoelly2007, author = {Champagnat, Nicolas and Roelly, Sylvie}, title = {Multitype Dawson-Watanabe superprocesses conditioned by remote survival}, series = {Preprint / Universit{\"a}t Potsdam, Institut f{\"u}r Mathematik, Mathematische Statistik un}, journal = {Preprint / Universit{\"a}t Potsdam, Institut f{\"u}r Mathematik, Mathematische Statistik un}, publisher = {Univ.}, address = {Potsdam}, issn = {1613-3307}, pages = {39 S.}, year = {2007}, language = {en} } @misc{ChampagnatRoelly2008, author = {Champagnat, Nicolas and Roelly, Sylvie}, title = {Limit theorems for conditioned multitype Dawson-Watanabe processes and Feller diffusions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18610}, year = {2008}, abstract = {A multitype Dawson-Watanabe process is conditioned, in subcritical and critical cases, on non-extinction in the remote future. On every finite time interval, its distribution is absolutely continuous with respect to the law of the unconditioned process. A martingale problem characterization is also given. Several results on the long time behavior of the conditioned mass process - the conditioned multitype Feller branching diffusion - are then proved. The general case is first considered, where the mutation matrix which models the interaction between the types, is irreducible. Several two-type models with decomposable mutation matrices are analyzed too .}, language = {en} } @unpublished{ChampagnatRoelly2007, author = {Champagnat, Nicolas and Roelly, Sylvie}, title = {Limit theorems for conditioned multitype Dawson-Watanabe processes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49426}, year = {2007}, abstract = {A multitype Dawson-Watanabe process is conditioned, in subcritical and critical cases, on non-extinction in the remote future. On every nite time interval, its distribution law is absolutely continuous with respect to the law of the unconditioned process. A martingale problem characterization is also given. The explicit form of the Laplace functional of the conditioned process is used to obtain several results on the long time behaviour of the mass of the conditioned and unconditioned processes. The general case is considered first, where the mutation matrix which modelizes the interaction between the types, is irreducible. Several two-type models with decomposable mutation matrices are also analysed.}, language = {en} } @unpublished{ConfortiDaiPraRoelly2014, author = {Conforti, Giovanni and Dai Pra, Paolo and Roelly, Sylvie}, title = {Reciprocal class of jump processes}, volume = {3}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70776}, pages = {30}, year = {2014}, abstract = {Processes having the same bridges as a given reference Markov process constitute its reciprocal class. In this paper we study the reciprocal class of compound Poisson processes whose jumps belong to a finite set A in R^d. We propose a characterization of the reciprocal class as the unique set of probability measures on which a family of time and space transformations induces the same density, expressed in terms of the reciprocal invariants. The geometry of A plays a crucial role in the design of the transformations, and we use tools from discrete geometry to obtain an optimal characterization. We deduce explicit conditions for two Markov jump processes to belong to the same class. Finally, we provide a natural interpretation of the invariants as short-time asymptotics for the probability that the reference process makes a cycle around its current state.}, language = {en} } @article{ConfortiKosenkovaRoelly2019, author = {Conforti, Giovanni and Kosenkova, Tetiana and Roelly, Sylvie}, title = {Conditioned Point Processes with Application to Levy Bridges}, series = {Journal of theoretical probability}, volume = {32}, journal = {Journal of theoretical probability}, number = {4}, publisher = {Springer}, address = {New York}, issn = {0894-9840}, doi = {10.1007/s10959-018-0863-8}, pages = {2111 -- 2134}, year = {2019}, abstract = {Our first result concerns a characterization by means of a functional equation of Poisson point processes conditioned by the value of their first moment. It leads to a generalized version of Mecke's formula. En passant, it also allows us to gain quantitative results about stochastic domination for Poisson point processes under linear constraints. Since bridges of a pure jump L{\´e}vy process in Rd with a height a can be interpreted as a Poisson point process on space-time conditioned by pinning its first moment to a, our approach allows us to characterize bridges of L{\´e}vy processes by means of a functional equation. The latter result has two direct applications: First, we obtain a constructive and simple way to sample L{\´e}vy bridge dynamics; second, it allows us to estimate the number of jumps for such bridges. We finally show that our method remains valid for linearly perturbed L{\´e}vy processes like periodic Ornstein-Uhlenbeck processes driven by L{\´e}vy noise.}, language = {en} } @article{ConfortiLeonardMurretal.2015, author = {Conforti, Giovanni and Leonard, Christian and Murr, R{\"u}diger and Roelly, Sylvie}, title = {Bridges of Markov counting processes. Reciprocal classes and duality formulas}, series = {Electronic communications in probability}, volume = {20}, journal = {Electronic communications in probability}, publisher = {Univ. of Washington, Mathematics Dep.}, address = {Seattle}, issn = {1083-589X}, doi = {10.1214/ECP.v20-3697}, pages = {12}, year = {2015}, abstract = {Processes sharing the same bridges are said to belong to the same reciprocal class. In this article we analyze reciprocal classes of Markov counting processes by identifying their reciprocal invariants and we characterize them as the set of counting processes satisfying some duality formula.}, language = {en} } @unpublished{ConfortiLeonardMurretal.2014, author = {Conforti, Giovanni and L{\´e}onard, Christian and Murr, R{\"u}diger and Roelly, Sylvie}, title = {Bridges of Markov counting processes : reciprocal classes and duality formulas}, volume = {3}, number = {9}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-71855}, pages = {12}, year = {2014}, abstract = {Processes having the same bridges are said to belong to the same reciprocal class. In this article we analyze reciprocal classes of Markov counting processes by identifying their reciprocal invariants and we characterize them as the set of counting processes satisfying some duality formula.}, language = {en} } @article{ConfortiPraRoelly2015, author = {Conforti, Giovanni and Pra, Paolo Dai and Roelly, Sylvie}, title = {Reciprocal Class of Jump Processes}, series = {Journal of theoretical probability}, volume = {30}, journal = {Journal of theoretical probability}, publisher = {Springer}, address = {New York}, issn = {0894-9840}, doi = {10.1007/s10959-015-0655-3}, pages = {551 -- 580}, year = {2015}, abstract = {Processes having the same bridges as a given reference Markov process constitute its reciprocal class. In this paper we study the reciprocal class of compound Poisson processes whose jumps belong to a finite set . We propose a characterization of the reciprocal class as the unique set of probability measures on which a family of time and space transformations induces the same density, expressed in terms of the reciprocal invariants. The geometry of plays a crucial role in the design of the transformations, and we use tools from discrete geometry to obtain an optimal characterization. We deduce explicit conditions for two Markov jump processes to belong to the same class. Finally, we provide a natural interpretation of the invariants as short-time asymptotics for the probability that the reference process makes a cycle around its current state.}, language = {en} }