@article{ChaykovskaAltervonWebskyetal.2013, author = {Chaykovska, Lyubov and Alter, Markus L. and von Websky, Karoline and Hohmann, Margarete and Tsuprykov, Oleg and Reichetzeder, Christoph and Kutil, Barbara and Kraft, Robin and Klein, Thomas and Hocher, Berthold}, title = {Effects of telmisartan and linagliptin when used in combination on blood pressure and oxidative stress in rats with 2-kidney-1-clip hypertension}, series = {Journal of hypertension}, volume = {31}, journal = {Journal of hypertension}, number = {11}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0263-6352}, doi = {10.1097/HJH.0b013e3283649b4d}, pages = {2290 -- 2299}, year = {2013}, abstract = {Objective:To investigate the effects of linagliptin alone and in combination with the angiotensin II receptor blocker (ARB), telmisartan on blood pressure (BP), kidney function, heart morphology and oxidative stress in rats with renovascular hypertension.Methods:Fifty-seven male Wistar rats underwent unilateral surgical stenosis of the renal artery [2-kidney-1-clip (2k1c) method]. Animals were randomly divided into four treatment groups (n=14-18 per group) receiving: telmisartan (10mg/kg per day in drinking water), linagliptin (89ppm in chow), combination (linagliptin 89ppm+telmisartan 10mg/kg per day) or placebo. An additional group of 12 rats underwent sham surgery. BP was measured one week after surgery. Hypertensive animals entered a 16-week dosing period. BP was measured 2, 4, 8, 12 and 16 weeks after the initiation of treatment. Blood and urine were tested for assessment of kidney function and oxidative stress 6, 10, 14 and 18 weeks after surgery. Blood and urine sampling and organ harvesting were finally performed.Results:Renal stenosis caused an increase in meanSD systolic BP as compared with the sham group (157.7 +/- 29.3 vs. 106.2 +/- 20.5mmHg, respectively; P<0.001). Telmisartan alone and in combination with linagliptin, normalized SBP (111.1 +/- 24.3mmHg and 100.4 +/- 13.9mmHg, respectively; P<0.001 vs. placebo). Telmisartan alone and in combination with linagliptin significantly prevented cardiac hypertrophy, measured by heart weight and myocyte diameter. Renal function measured by cystatin C was not affected by 2k1c surgery. Telmisartan significantly increased plasma concentration of cystatin C. 2k1c surgery initiated fibrosis in both kidneys. Telmisartan promoted further fibrotic changes in the clipped kidney, as measured by protein expression of Col1a1 and histology for interstitial fibrosis and glomerulosclerosis. In non-clipped kidneys, telmisartan demonstrated antifibrotic properties, reducing Col1a1 protein expression. Plasma levels of oxidized low-density lipoprotein were higher in the placebo-treated 2k1c rats as compared to sham-operated animals. The increase was abolished by linagliptin alone (P=0.03 vs. placebo) and in combination with telmisartan (P=0.02 vs. placebo). Combination therapy also significantly reduced plasma concentration of carbonyl proteins (P=0.04 vs. placebo).Conclusion:Inhibition of type 4 dipeptidyl peptidase with linagliptin did not counter BP-lowering effects of ARB in 2k1c rats. Linagliptin reduced lipid and protein oxidation in 2k1c rats, and this effect was BP-independent.}, language = {en} } @article{HasanvonWebskyReichetzederetal.2019, author = {Hasan, Ahmed Abdallah Abdalrahman Mohamed and von Websky, Karoline and Reichetzeder, Christoph and Tsuprykov, Oleg and Gaballa, Mohamed Mahmoud Salem Ahmed and Guo, Jingli and Zeng, Shufei and Delic, Denis and Tammen, Harald and Klein, Thomas and Kleuser, Burkhard and Hocher, Berthold}, title = {Mechanisms of GLP-1 receptor-independent renoprotective effects of the dipeptidyl peptidase type 4 inhibitor linagliptin in GLP-1 receptor knockout mice with 5/6 nephrectomy}, series = {Kidney international : official journal of the International Society of Nephrology}, volume = {95}, journal = {Kidney international : official journal of the International Society of Nephrology}, number = {6}, publisher = {Elsevier}, address = {New York}, issn = {0085-2538}, doi = {10.1016/j.kint.2019.01.010}, pages = {1373 -- 1388}, year = {2019}, abstract = {Dipeptidyl peptidase type 4 (DPP-4) inhibitors were reported to have beneficial effects in experimental models of chronic kidney disease. The underlying mechanisms are not completely understood. However, these effects could be mediated via the glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP1R) pathway. Here we investigated the renal effects of the DPP-4 inhibitor linagliptin in Glp1r-/- knock out and wild-type mice with 5/6 nephrectomy (5/6Nx). Mice were allocated to groups: sham + wild type + placebo; 5/6Nx+ wild type + placebo; 5/6Nx+ wild type + linagliptin; sham + knock out+ placebo; 5/6Nx + knock out+ placebo; 5/6Nx + knock out+ linagliptin. 5/6Nx caused the development of renal interstitial fibrosis, significantly increased plasma cystatin C and creatinine levels and suppressed renal gelatinase/collagenase, matrix metalloproteinase-1 and -13 activities; effects counteracted by linagliptin treatment in wildtype and Glp1r-/- mice. Two hundred ninety-eight proteomics signals were differentially regulated in kidneys among the groups, with 150 signals specific to linagliptin treatment as shown by mass spectrometry. Treatment significantly upregulated three peptides derived from collagen alpha-1(I), thymosin beta 4 and heterogeneous nuclear ribonucleoprotein Al (HNRNPA1) and significantly downregulated one peptide derived from Y box binding protein-1 (YB-1). The proteomics results were further confirmed using western blot and immunofluorescence microscopy. Also, 5/6Nx led to significant up-regulation of renal transforming growth factor-beta 1 and pSMAD3 expression in wild type mice and linagliptin significantly counteracted this up-regulation in wild type and GIplr-/- mice. Thus, the renoprotective effects of linagliptin cannot solely be attributed to the GLP-1/GLP1R pathway, highlighting the importance of other signaling pathways (collagen I homeostasis, HNRNPA1,YB-1,thymosin beta 4 and TGF-beta 1) influenced by DPP-4 inhibition.}, language = {en} } @article{SharkovskaReichetzederAlteretal.2014, author = {Sharkovska, Yuliya and Reichetzeder, Christoph and Alter, Markus L. and Tsuprykov, Oleg and Bachmann, Sebastian and Secher, Thomas and Klein, Thomas and Hocher, Berthold}, title = {Blood pressure and glucose independent renoprotective effects of dipeptidyl peptidase-4 inhibition in a mouse model of type-2 diabetic nephropathy}, series = {Journal of hypertension}, volume = {32}, journal = {Journal of hypertension}, number = {11}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0263-6352}, doi = {10.1097/HJH.0000000000000328}, pages = {2211 -- 2223}, year = {2014}, abstract = {Background: Despite the beneficial effects of type 4 dipeptidyl peptidase (DPP-4) inhibitors on glucose levels, its effects on diabetic nephropathy remain unclear. Method: This study examined the long-term renoprotective effects of DPP-4 inhibitor linagliptin in db/db mice, a model of type 2 diabetes. Results were compared with the known beneficial effects of renin-angiotensin system blockade by enalapril. Ten-week-old male diabetic db/db mice were treated for 3 months with either vehicle (n = 10), 3 mg linagliptin/kg per day (n = 8), or 20 mg enalapril/kg per day (n = 10). Heterozygous db/m mice treated with vehicle served as healthy controls (n = 8). Results: Neither linagliptin nor enalapril had significant effects on the parameters of glucose metabolism or blood pressure in diabetic db/db mice. However, linagliptin treatment reduced albuminuria and attenuated kidney injury. In addition, expression of podocyte marker podocalyxin was normalized. We also analysed DPP-4 expression by immunofluorescence in human kidney biopsies and detected upregulation of DPP-4 in the glomeruli of patients with diabetic nephropathy, suggesting that our findings might be of relevance for human kidney disease as well. Conclusion: Treatment with DPP-4 inhibitor linagliptin delays the progression of diabetic nephropathy damage in a glucose-independent and blood-pressure-independent manner. The observed effects may be because of the attenuation of podocyte injury and inhibition of myofibroblast transformation.}, language = {en} }