@article{CatchpolePlatzerWeikertetal.2011, author = {Catchpole, Gareth and Platzer, Alexander and Weikert, Cornelia and Kempkensteffen, Carsten and Johannsen, Manfred and Krause, Hans and Jung, Klaus and Miller, Kurt and Willmitzer, Lothar and Selbig, Joachim and Weikert, Steffen}, title = {Metabolic profiling reveals key metabolic features of renal cell carcinoma}, series = {Journal of cellular and molecular medicine : a journal of translational medicine}, volume = {15}, journal = {Journal of cellular and molecular medicine : a journal of translational medicine}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1582-1838}, doi = {10.1111/j.1582-4934.2009.00939.x}, pages = {109 -- 118}, year = {2011}, abstract = {Recent evidence suggests that metabolic changes play a pivotal role in the biology of cancer and in particular renal cell carcinoma (RCC). Here, a global metabolite profiling approach was applied to characterize the metabolite pool of RCC and normal renal tissue. Advanced decision tree models were applied to characterize the metabolic signature of RCC and to explore features of metastasized tumours. The findings were validated in a second independent dataset. Vitamin E derivates and metabolites of glucose, fatty acid, and inositol phosphate metabolism determined the metabolic profile of RCC. alpha-tocopherol, hippuric acid, myoinositol, fructose-1-phosphate and glucose-1-phosphate contributed most to the tumour/normal discrimination and all showed pronounced concentration changes in RCC. The identified metabolic profile was characterized by a low recognition error of only 5\% for tumour versus normal samples. Data on metastasized tumours suggested a key role for metabolic pathways involving arachidonic acid, free fatty acids, proline, uracil and the tricarboxylic acid cycle. These results illustrate the potential of mass spectroscopy based metabolomics in conjunction with sophisticated data analysis methods to uncover the metabolic phenotype of cancer. Differentially regulated metabolites, such as vitamin E compounds, hippuric acid and myoinositol, provide leads for the characterization of novel pathways in RCC.}, language = {en} } @article{LisecSteinfathMeyeretal.2009, author = {Lisec, Jan and Steinfath, Matthias and Meyer, Rhonda C. and Selbig, Joachim and Melchinger, Albrecht E. and Willmitzer, Lothar and Altmann, Thomas}, title = {Identification of heterotic metabolite QTL in Arabidopsis thaliana RIL and IL populations}, issn = {0960-7412}, doi = {10.1111/j.1365-313X.2009.03910.x}, year = {2009}, abstract = {Two mapping populations of a cross between the Arabidopsis thaliana accessions Col-0 and C24 were cultivated and analyzed with respect to the levels of 181 metabolites to elucidate the biological phenomenon of heterosis at the metabolic level. The relative mid-parent heterosis in the F-1 hybrids was <20\% for most metabolic traits. The first mapping population consisting of 369 recombinant inbred lines (RILs) and their test cross progeny with both parents allowed us to determine the position and effect of 147 quantitative trait loci (QTL) for metabolite absolute mid-parent heterosis (aMPH). Furthermore, we identified 153 and 83 QTL for augmented additive (Z(1)) and dominance effects (Z(2)), respectively. We identified putative candidate genes for these QTL using the ARACYC database (http://www.arabidopsis.org/ biocyc), and calculated the average degree of dominance, which was within the dominance and over-dominance range for most metabolites. Analyzing a second population of 41 introgression lines (ILs) and their test crosses with the recurrent parent, we identified 634 significant differences in metabolite levels. Nine per cent of these effects were classified as over-dominant, according to the mode of inheritance. A comparison of both approaches suggested epistasis as a major contributor to metabolite heterosis in Arabidopsis. A linear combination of metabolite levels was shown to significantly correlate with biomass heterosis (r = 0.62).}, language = {en} } @article{RoessnerLuedemannBrustetal.2001, author = {Roessner, Ute and Luedemann, A. and Brust, D. and Fiehn, Oliver and Linke, Thomas and Willmitzer, Lothar and Fernie, Alisdair R.}, title = {Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems}, issn = {1040-4651}, year = {2001}, language = {en} }