@article{DeFrenneBaetenGraaeetal.2011, author = {De Frenne, Pieter and Baeten, Lander and Graae, Bente J. and Brunet, Jorg and Wulf, Monika and Orczewska, Anna and Kolb, Annette and Jansen, Ivy and Jamoneau, Aurelien and Jacquemyn, Hans and Hermy, Martin and Diekmann, Martin and De Schrijver, An and De Sanctis, Michele and Decocq, Guillaume and Cousins, Sara A. O. and Verheyen, Kris}, title = {Interregional variation in the floristic recovery of post-agricultural forests}, series = {The journal of ecology}, volume = {99}, journal = {The journal of ecology}, number = {2}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0022-0477}, doi = {10.1111/j.1365-2745.2010.01768.x}, pages = {600 -- 609}, year = {2011}, abstract = {1. Worldwide, the floristic composition of temperate forests bears the imprint of past land use for decades to centuries as forests regrow on agricultural land. Many species, however, display significant interregional variation in their ability to (re)colonize post-agricultural forests. This variation in colonization across regions and the underlying factors remain largely unexplored. 2. We compiled data on 90 species and 812 species x study combinations from 18 studies across Europe that determined species' distribution patterns in ancient (i.e. continuously forested since the first available land use maps) and post-agricultural forests. The recovery rate (RR) of species in each landscape was quantified as the log-response ratio of the percentage occurrence in post-agricultural over ancient forest and related to the species-specific life-history traits and local (soil characteristics and light availability) and regional factors (landscape properties as habitat availability, time available for colonization, and climate). 3. For the herb species, we demonstrate a strong (interactive) effect of species' life-history traits and forest habitat availability on the RR of post-agricultural forest. In graminoids, however, none of the investigated variables were significantly related to the RR. 4. The better colonizing species that mainly belonged to the short-lived herbs group showed the largest interregional variability. Their recovery significantly increased with the amount of forest habitat within the landscape, whereas, surprisingly, the time available for colonization, climate, soil characteristics and light availability had no effect. 5. Synthesis. By analysing 18 independent studies across Europe, we clearly showed for the first time on a continental scale that the recovery of short-lived forest herbs increased with the forest habitat availability in the landscape. Small perennial forest herbs, however, were generally unsuccessful in colonizing post-agricultural forest even in relatively densely forested landscapes. Hence, our results stress the need to avoid ancient forest clearance to preserve the typical woodland flora.}, language = {en} } @article{DeFrenneBrunetShevtsovaetal.2011, author = {De Frenne, Pieter and Brunet, Jorg and Shevtsova, Anna and Kolb, Annette and Graae, Bente J. and Chabrerie, Olivier and Cousins, Sara Ao and Decocq, Guillaume and De Schrijver, An and Diekmann, Martin and Gruwez, Robert and Heinken, Thilo and Hermy, Martin and Nilsson, Christer and Stanton, Sharon and Tack, Wesley and Willaert, Justin and Verheyen, Kris}, title = {Temperature effects on forest herbs assessed by warming and transplant experiments along a latitudinal gradient}, series = {Global change biology}, volume = {17}, journal = {Global change biology}, number = {10}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/j.1365-2486.2011.02449.x}, pages = {3240 -- 3253}, year = {2011}, abstract = {Slow-colonizing forest understorey plants are probably not able to rapidly adjust their distribution range following large-scale climate change. Therefore, the acclimation potential to climate change within their actual occupied habitats will likely be key for their short-and long-term persistence. We combined transplant experiments along a latitudinal gradient with open-top chambers to assess the effects of temperature on phenology, growth and reproductive performance of multiple populations of slow-colonizing understorey plants, using the spring flowering geophytic forb Anemone nemorosa and the early summer flowering grass Milium effusum as study species. In both species, emergence time and start of flowering clearly advanced with increasing temperatures. Vegetative growth (plant height, aboveground biomass) and reproductive success (seed mass, seed germination and germinable seed output) of A. nemorosa benefited from higher temperatures. Climate warming may thus increase future competitive ability and colonization rates of this species. Apart from the effects on phenology, growth and reproductive performance of M. effusum generally decreased when transplanted southwards (e. g., plant size and number of individuals decreased towards the south) and was probably more limited by light availability in the south. Specific leaf area of both species increased when transplanted southwards, but decreased with open-top chamber installation in A. nemorosa. In general, individuals of both species transplanted at the home site performed best, suggesting local adaptation. We conclude that contrasting understorey plants may display divergent plasticity in response to changing temperatures which may alter future understorey community dynamics.}, language = {en} } @article{DeFrenneGraaeBrunetetal.2012, author = {De Frenne, Pieter and Graae, Bente J. and Brunet, J{\"o}rg and Shevtsova, Anna and De Schrijver, An and Chabrerie, Olivier and Cousins, Sara A. O. and Decocq, Guillaume and Diekmann, Martin and Hermy, Martin and Heinken, Thilo and Kolb, Annette and Nilsson, Christer and Stanton, Sharon and Verheyen, Kris}, title = {The response of forest plant regeneration to temperature variation along a latitudinal gradient}, series = {Annals of botany}, volume = {109}, journal = {Annals of botany}, number = {5}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0305-7364}, doi = {10.1093/aob/mcs015}, pages = {1037 -- 1046}, year = {2012}, abstract = {The response of forest herb regeneration from seed to temperature variations across latitudes was experimentally assessed in order to forecast the likely response of understorey community dynamics to climate warming. Seeds of two characteristic forest plants (Anemone nemorosa and Milium effusum) were collected in natural populations along a latitudinal gradient from northern France to northern Sweden and exposed to three temperature regimes in growth chambers (first experiment). To test the importance of local adaptation, reciprocal transplants were also made of adult individuals that originated from the same populations in three common gardens located in southern, central and northern sites along the same gradient, and the resulting seeds were germinated (second experiment). Seedling establishment was quantified by measuring the timing and percentage of seedling emergence, and seedling biomass in both experiments. Spring warming increased emergence rates and seedling growth in the early-flowering forb A. nemorosa. Seedlings of the summer-flowering grass M. effusum originating from northern populations responded more strongly in terms of biomass growth to temperature than southern populations. The above-ground biomass of the seedlings of both species decreased with increasing latitude of origin, irrespective of whether seeds were collected from natural populations or from the common gardens. The emergence percentage decreased with increasing home-away distance in seeds from the transplant experiment, suggesting that the maternal plants were locally adapted. Decreasing seedling emergence and growth were found from the centre to the northern edge of the distribution range for both species. Stronger responses to temperature variation in seedling growth of the grass M. effusum in the north may offer a way to cope with environmental change. The results further suggest that climate warming might differentially affect seedling establishment of understorey plants across their distribution range and thus alter future understorey plant dynamics.}, language = {en} } @article{DeFrenneGraaeKolbetal.2011, author = {De Frenne, Pieter and Graae, Bente J. and Kolb, Annette and Shevtsova, Anna and Baeten, Lander and Brunet, J{\"o}rg and Chabrerie, Olivier and Cousins, Sara A. O. and Decocq, Guillaume and Dhondt, Rob and Diekmann, Martin and Gruwez, Robert and Heinken, Thilo and Hermy, Martin and Oster, Mathias and Saguez, Robert and Stanton, Sharon and Tack, Wesley and Vanhellemont, Margot and Verheyen, Kris}, title = {An intraspecific application of the leaf-height-seed ecology strategy scheme to forest herbs along a latitudinal gradient}, series = {Ecography : pattern and diversity in ecology ; research papers forum}, volume = {34}, journal = {Ecography : pattern and diversity in ecology ; research papers forum}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0906-7590}, doi = {10.1111/j.1600-0587.2010.06399.x}, pages = {132 -- 140}, year = {2011}, abstract = {We measured LHS traits in 41 Anemone nemorosa and 44 Milium effusum populations along a 1900-2300 km latitudinal gradient from N France to N Sweden. We then applied multilevel models to identify the effects of regional (temperature, latitude) and local (soil fertility and acidity, overstorey canopy cover) environmental factors on LHS traits. Both species displayed a significant 4\% increase in plant height with every degree northward shift (almost a two-fold plant height difference between the southernmost and northernmost populations). Neither seed mass nor SLA showed a significant latitudinal cline. Temperature had a large effect on the three LHS traits of Anemone. Latitude, canopy cover and soil nutrients were related to the SLA and plant height of Milium. None of the investigated variables appeared to be related to the seed mass of Milium. The variation in LHS traits indicates that the ecological strategy determined by the position of each population in this three-factor triangle is not constant along the latitudinal gradient. The significant increase in plant height suggests greater competitive abilities for both species in the northernmost populations. We also found that the studied environmental factors affected the LHS traits of the two species on various scales: spring-flowering Anemone was affected more by temperature, whereas early-summer flowering Milium was affected more by local and other latitude-related factors. Finally, previously reported cross-species correlations between LHS traits and latitude were generally unsupported by our within-species approach.}, language = {en} } @article{GraaeDeFrenneKolbetal.2012, author = {Graae, Bente J. and De Frenne, Pieter and Kolb, Annette and Brunet, Jorg and Chabrerie, Olivier and Verheyen, Kris and Pepin, Nick and Heinken, Thilo and Zobel, Martin and Shevtsova, Anna and Nijs, Ivan and Milbau, Ann}, title = {On the use of weather data in ecological studies along altitudinal and latitudinal gradients}, series = {Oikos}, volume = {121}, journal = {Oikos}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0030-1299}, doi = {10.1111/j.1600-0706.2011.19694.x}, pages = {3 -- 19}, year = {2012}, abstract = {Global warming has created a need for studies along climatic gradients to assess the effects of temperature on ecological processes. Altitudinal and latitudinal gradients are often used as such, usually in combination with air temperature data from the closest weather station recorded at 1.52 m above the ground. However, many ecological processes occur in, at, or right above the soil surface. To evaluate how representative the commonly used weather station data are for the microclimate relevant for soil surface biota, we compared weather station temperatures for an altitudinal (500900 m a.s.l.) and a latitudinal gradient (4968 degrees N) with data obtained by temperature sensors placed right below the soil surface at five sites along these gradients. The mean annual temperatures obtained from weather stations and adjusted using a lapse rate of -5.5 degrees C km-1 were between 3.8 degrees C lower and 1.6 degrees C higher than those recorded by the temperature sensors at the soil surface, depending on the position along the gradients. The monthly mean temperatures were up to 10 degrees C warmer or 5 degrees C colder at the soil surface. The within-site variation in accumulated temperature was as high as would be expected from a 300 m change in altitude or from a 4 degrees change in latitude or a climate change scenario corresponding to warming of 1.63.8 degrees C. Thus, these differences introduced by the decoupling are significant from a climate change perspective, and the results demonstrate the need for incorporating microclimatic variation when conducting studies along altitudinal or latitudinal gradients. We emphasize the need for using relevant temperature data in climate impact studies and further call for more studies describing the soil surface microclimate, which is crucial for much of the biota.}, language = {en} } @article{LemkeKolbGraaeetal.2015, author = {Lemke, Isgard H. and Kolb, Annette and Graae, Bente J. and De Frenne, Pieter and Acharya, Kamal P. and Blandino, Cristina and Brunet, Jorg and Chabrerie, Olivier and Cousins, Sara A. O. and Decocq, Guillaume and Heinken, Thilo and Hermy, Martin and Liira, Jaan and Schmucki, Reto and Shevtsova, Anna and Verheyen, Kris and Diekmann, Martin}, title = {Patterns of phenotypic trait variation in two temperate forest herbs along a broad climatic gradient}, series = {Plant ecology : an international journal}, volume = {216}, journal = {Plant ecology : an international journal}, number = {11}, publisher = {Springer}, address = {Dordrecht}, issn = {1385-0237}, doi = {10.1007/s11258-015-0534-0}, pages = {1523 -- 1536}, year = {2015}, abstract = {Phenotypic trait variation plays a major role in the response of plants to global environmental change, particularly in species with low migration capabilities and recruitment success. However, little is known about the variation of functional traits within populations and about differences in this variation on larger spatial scales. In a first approach, we therefore related trait expression to climate and local environmental conditions, studying two temperate forest herbs, Milium effusum and Stachys sylvatica, along a similar to 1800-2500 km latitudinal gradient. Within each of 9-10 regions in six European countries, we collected data from six populations of each species and recorded several variables in each region (temperature, precipitation) and population (light availability, soil parameters). For each plant, we measured height, leaf area, specific leaf area, seed mass and the number of seeds and examined environmental effects on within-population trait variation as well as on trait means. Most importantly, trait variation differed both between and within populations. Species, however, differed in their response. Intrapopulation variation in Milium was consistently positively affected by higher mean temperatures and precipitation as well as by more fertile local soil conditions, suggesting that more productive conditions may select for larger phenotypic variation. In Stachys, particularly light availability positively influenced trait variation, whereas local soil conditions had no consistent effects. Generally, our study emphasises that intra-population variation may differ considerably across larger scales-due to phenotypic plasticity and/or underlying genetic diversity-possibly affecting species response to global environmental change.}, language = {en} } @article{PlueDeFrenneAcharyaetal.2017, author = {Plue, Jan and De Frenne, Pieter and Acharya, Kamal and Brunet, J{\"o}rg and Chabrerie, Olivier and Decocq, Guillaume and Diekmann, Martin and Graae, Bente J. and Heinken, Thilo and Hermy, Martin and Kolb, Annette and Lemke, Isgard and Liira, Jaan and Naaf, Tobias and Verheyen, Kris and Wulf, Monika and Cousins, Sara A. O.}, title = {Where does the community start, and where does it end?}, series = {Journal of vegetation science}, volume = {28}, journal = {Journal of vegetation science}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {1100-9233}, doi = {10.1111/jvs.12493}, pages = {424 -- 435}, year = {2017}, abstract = {QuestionBelow-ground processes are key determinants of above-ground plant population and community dynamics. Still, our understanding of how environmental drivers shape plant communities is mostly based on above-ground diversity patterns, bypassing below-ground plant diversity stored in seed banks. As seed banks may shape above-ground plant communities, we question whether concurrently analysing the above- and below-ground species assemblages may potentially enhance our understanding of community responses to environmental variation. LocationTemperate deciduous forests along a 2000km latitudinal gradient in NW Europe. MethodsHerb layer, seed bank and local environmental data including soil pH, canopy cover, forest cover continuity and time since last canopy disturbance were collected in 129 temperate deciduous forest plots. We quantified herb layer and seed bank diversity per plot and evaluated how environmental variation structured community diversity in the herb layer, seed bank and the combined herb layer-seed bank community. ResultsSeed banks consistently held more plant species than the herb layer. How local plot diversity was partitioned across the herb layer and seed bank was mediated by environmental variation in drivers serving as proxies of light availability. The herb layer and seed bank contained an ever smaller and ever larger share of local diversity, respectively, as both canopy cover and time since last canopy disturbance decreased. Species richness and -diversity of the combined herb layer-seed bank community responded distinctly differently compared to the separate assemblages in response to environmental variation in, e.g. forest cover continuity and canopy cover. ConclusionsThe seed bank is a below-ground diversity reservoir of the herbaceous forest community, which interacts with the herb layer, although constrained by environmental variation in e.g. light availability. The herb layer and seed bank co-exist as a single community by means of the so-called storage effect, resulting in distinct responses to environmental variation not necessarily recorded in the individual herb layer or seed bank assemblages. Thus, concurrently analysing above- and below-ground diversity will improve our ecological understanding of how understorey plant communities respond to environmental variation.}, language = {en} } @article{PlueDeFrenneAcharyaetal.2013, author = {Plue, Jan and De Frenne, Pieter and Acharya, Kamal P. and Brunet, Jorg and Chabrerie, Olivier and Decocq, Guillaume and Diekmann, Martin and Graae, Bente J. and Heinken, Thilo and Hermy, Martin and Kolb, Annette and Lemke, Isgard and Liira, Jaan and Naaf, Tobias and Shevtsova, Anna and Verheyen, Kris and Wulf, Monika and Cousins, Sara A. O.}, title = {Climatic control of forest herb seed banks along a latitudinal gradient}, series = {Global ecology and biogeography : a journal of macroecology}, volume = {22}, journal = {Global ecology and biogeography : a journal of macroecology}, number = {10}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1466-822X}, doi = {10.1111/geb.12068}, pages = {1106 -- 1117}, year = {2013}, abstract = {Aim Seed banks are central to the regeneration strategy of many plant species. Any factor altering seed bank density thus affects plant regeneration and population dynamics. Although seed banks are dynamic entities controlled by multiple environmental drivers, climatic factors are the most comprehensive, but still poorly understood. This study investigates how climatic variation structures seed production and resulting seed bank patterns. Location Temperate forests along a 1900km latitudinal gradient in north-western (NW) Europe. Methods Seed production and seed bank density were quantified in 153 plots along the gradient for four forest herbs with different seed longevity: Geum urbanum, Milium effusum, Poa nemoralis and Stachys sylvatica. We tested the importance of climatic and local environmental factors in shaping seed production and seed bank density. Results Seed production was determined by population size, and not by climatic factors. G.urbanum and M.effusum seed bank density declined with decreasing temperature (growing degree days) and/or increasing temperature range (maximum-minimum temperature). P.nemoralis and S.sylvatica seed bank density were limited by population size and not by climatic variables. Seed bank density was also influenced by other, local environmental factors such as soil pH or light availability. Different seed bank patterns emerged due to differential seed longevities. Species with long-lived seeds maintained constant seed bank densities by counteracting the reduced chance of regular years with high seed production at colder northern latitudes. Main conclusions Seed bank patterns show clear interspecific variation in response to climate across the distribution range. Not all seed banking species may be as well equipped to buffer climate change via their seed bank, notably in short-term persistent species. Since the buffering capacity of seed banks is key to species persistence, these results provide crucial information to advance climatic change predictions on range shifts, community and biodiversity responses.}, language = {en} }