@article{MeyerPufahlBatoulisetal.2015, author = {Meyer, Andreas and Pufahl, Luise and Batoulis, Kimon and Fahland, Dirk and Weske, Mathias}, title = {Automating data exchange in process choreographies}, series = {Information systems}, volume = {53}, journal = {Information systems}, publisher = {Elsevier}, address = {Oxford}, issn = {0306-4379}, doi = {10.1016/j.is.2015.03.008}, pages = {296 -- 329}, year = {2015}, abstract = {Communication between organizations is formalized as process choreographies in daily business. While the correct ordering of exchanged messages can be modeled and enacted with current choreography techniques, no approach exists to describe and automate the exchange of data between processes in a choreography using messages. This paper describes an entirely model-driven approach for BPMN introducing a few concepts that suffice to model data retrieval, data transformation, message exchange, and correlation four aspects of data exchange. For automation, this work utilizes a recent concept to enact data dependencies in internal processes. We present a modeling guideline to derive local process models from a given choreography; their operational semantics allows to correctly enact the entire choreography from the derived models only including the exchange of data. Targeting on successful interactions, we discuss means to ensure correct process choreography modeling. Finally, we implemented our approach by extending the camunda BPM platform with our approach and show its feasibility by realizing all service interaction patterns using only model-based concepts. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{PolyvyanyyGarciaBanuelosDumas2012, author = {Polyvyanyy, Artem and Garcia-Banuelos, Luciano and Dumas, Marlon}, title = {Structuring acyclic process models}, series = {Information systems}, volume = {37}, journal = {Information systems}, number = {6}, publisher = {Elsevier}, address = {Oxford}, issn = {0306-4379}, doi = {10.1016/j.is.2011.10.005}, pages = {518 -- 538}, year = {2012}, abstract = {This article studies the problem of transforming a process model with an arbitrary topology into an equivalent well-structured process model. While this problem has received significant attention, there is still no full characterization of the class of unstructured process models that can be transformed into well-structured ones, nor an automated method for structuring any process model that belongs to this class. This article fills this gap in the context of acyclic process models. The article defines a necessary and sufficient condition for an unstructured acyclic process model to have an equivalent well-structured process model under fully concurrent bisimulation, as well as a complete structuring method. The method has been implemented as a tool that takes process models captured in the BPMN and EPC notations as input. The article also reports on an empirical evaluation of the structuring method using a repository of process models from commercial practice.}, language = {en} }