@article{LiebigSarhanPrietzeletal.2016, author = {Liebig, Ferenc and Sarhan, Radwan Mohamed and Prietzel, Claudia Christina and Reinecke, Antje and Koetz, Joachim}, title = {"Green" gold nanotriangles: synthesis, purification by polyelectrolyte/micelle depletion flocculation and performance in surface-enhanced Raman scattering}, series = {RSC Advances}, volume = {6}, journal = {RSC Advances}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c6ra04808k}, pages = {33561 -- 33568}, year = {2016}, abstract = {The aim of this study was to develop a one-step synthesis of gold nanotriangles (NTs) in the presence of mixed phospholipid vesicles followed by a separation process to isolate purified NTs. Negatively charged vesicles containing AOT and phospholipids, in the absence and presence of additional reducing agents (polyampholytes, polyanions or low molecular weight compounds), were used as a template phase to form anisotropic gold nanoparticles. Upon addition of the gold chloride solution, the nucleation process is initiated and both types of particles, i.e., isotropic spherical and anisotropic gold nanotriangles, are formed simultaneously. As it was not possible to produce monodisperse nanotriangles with such a one-step procedure, the anisotropic nanoparticles needed to be separated from the spherical ones. Therefore, a new type of separation procedure using combined polyelectrolyte/micelle depletion flocculation was successfully applied. As a result of the different purification steps, a green colored aqueous dispersion was obtained containing highly purified, well-defined negatively charged flat nanocrystals with a platelet thickness of 10 nm and an edge length of about 175 nm. The NTs produce promising results in surface-enhanced Raman scattering.}, language = {en} } @article{LiebigHenningSarhanetal.2018, author = {Liebig, Ferenc and Henning, Ricky and Sarhan, Radwan Mohamed and Prietzel, Claudia Christina and Bargheer, Matias and Koetz, Joachim}, title = {A new route to gold nanoflowers}, series = {Nanotechnology}, volume = {29}, journal = {Nanotechnology}, number = {18}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0957-4484}, doi = {10.1088/1361-6528/aaaffd}, pages = {8}, year = {2018}, abstract = {Catanionic vesicles spontaneously formed by mixing the anionic surfactant bis(2-ethylhexyl)sulfosuccinate sodium salt with the cationic surfactant cetyltrimethylammonium bromide were used as a reducing medium to produce gold clusters, which are embedded and well-ordered into the template phase. The gold clusters can be used as seeds in the growth process that follows by adding ascorbic acid as a mild reducing component. When the ascorbic acid was added very slowly in an ice bath round-edged gold nanoflowers were produced. When the same experiments were performed at room temperature in the presence of Ag+ ions, sharp-edged nanoflowers could be synthesized. The mechanism of nanoparticle formation can be understood to be a non-diffusion-limited Ostwald ripening process of preordered gold nanoparticles embedded in catanionic vesicle fragments. Surface-enhanced Raman scattering experiments show an excellent enhancement factor of 1.7 . 10(5) for the nanoflowers deposited on a silicon wafer.}, language = {en} } @misc{LiebigHenningSarhanetal.2019, author = {Liebig, Ferenc and Henning, Ricky and Sarhan, Radwan Mohamed and Prietzel, Claudia Christina and Schmitt, Clemens Nikolaus Zeno and Bargheer, Matias and Koetz, Joachim}, title = {A simple one-step procedure to synthesise gold nanostars in concentrated aqueous surfactant solutions}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {769}, issn = {1866-8372}, doi = {10.25932/publishup-43874}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-438743}, pages = {23633 -- 23641}, year = {2019}, abstract = {Due to the enhanced electromagnetic field at the tips of metal nanoparticles, the spiked structure of gold nanostars (AuNSs) is promising for surface-enhanced Raman scattering (SERS). Therefore, the challenge is the synthesis of well designed particles with sharp tips. The influence of different surfactants, i.e., dioctyl sodium sulfosuccinate (AOT), sodium dodecyl sulfate (SDS), and benzylhexadecyldimethylammonium chloride (BDAC), as well as the combination of surfactant mixtures on the formation of nanostars in the presence of Ag⁺ ions and ascorbic acid was investigated. By varying the amount of BDAC in mixed micelles the core/spike-shell morphology of the resulting AuNSs can be tuned from small cores to large ones with sharp and large spikes. The concomitant red-shift in the absorption toward the NIR region without losing the SERS enhancement enables their use for biological applications and for time-resolved spectroscopic studies of chemical reactions, which require a permanent supply with a fresh and homogeneous solution. HRTEM micrographs and energy-dispersive X-ray (EDX) experiments allow us to verify the mechanism of nanostar formation according to the silver underpotential deposition on the spike surface in combination with micelle adsorption.}, language = {en} } @article{LiebigHenningSarhanetal.2019, author = {Liebig, Ferenc and Henning, Ricky and Sarhan, Radwan Mohamed and Prietzel, Claudia Christina and Schmitt, Clemens Nikolaus Zeno and Bargheer, Matias and Koetz, Joachim}, title = {A simple one-step procedure to synthesise gold nanostars in concentrated aqueous surfactant solutions}, series = {RSC Advances}, volume = {9}, journal = {RSC Advances}, publisher = {RSC Publishing}, address = {London}, issn = {2046-2069}, doi = {10.1039/C9RA02384D}, pages = {23633 -- 23641}, year = {2019}, abstract = {Due to the enhanced electromagnetic field at the tips of metal nanoparticles, the spiked structure of gold nanostars (AuNSs) is promising for surface-enhanced Raman scattering (SERS). Therefore, the challenge is the synthesis of well designed particles with sharp tips. The influence of different surfactants, i.e., dioctyl sodium sulfosuccinate (AOT), sodium dodecyl sulfate (SDS), and benzylhexadecyldimethylammonium chloride (BDAC), as well as the combination of surfactant mixtures on the formation of nanostars in the presence of Ag⁺ ions and ascorbic acid was investigated. By varying the amount of BDAC in mixed micelles the core/spike-shell morphology of the resulting AuNSs can be tuned from small cores to large ones with sharp and large spikes. The concomitant red-shift in the absorption toward the NIR region without losing the SERS enhancement enables their use for biological applications and for time-resolved spectroscopic studies of chemical reactions, which require a permanent supply with a fresh and homogeneous solution. HRTEM micrographs and energy-dispersive X-ray (EDX) experiments allow us to verify the mechanism of nanostar formation according to the silver underpotential deposition on the spike surface in combination with micelle adsorption.}, language = {en} } @article{LiebigSarhanSanderetal.2017, author = {Liebig, Ferenc and Sarhan, Radwan Mohamed and Sander, Mathias and Koopman, Wouter-Willem Adriaan and Schuetz, Roman and Bargheer, Matias and Koetz, Joachim}, title = {Deposition of Gold Nanotriangles in Large Scale Close-Packed Monolayers for X-ray-Based Temperature Calibration and SERS Monitoring of Plasmon-Driven Catalytic Reactions}, series = {ACS applied materials \& interfaces}, volume = {9}, journal = {ACS applied materials \& interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.7b07231}, pages = {20247 -- 20253}, year = {2017}, language = {en} } @article{LiebigSarhanSchmittetal.2020, author = {Liebig, Ferenc and Sarhan, Radwan Mohamed and Schmitt, Clemens Nikolaus Zeno and Th{\"u}nemann, Andreas F. and Prietzel, Claudia Christina and Bargheer, Matias and Koetz, Joachim}, title = {Gold nanotriangles with crumble topping and their influence on catalysis and surface-enhanced raman spectroscopy}, series = {ChemPlusChem}, volume = {85}, journal = {ChemPlusChem}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2192-6506}, doi = {10.1002/cplu.201900745}, pages = {519 -- 526}, year = {2020}, abstract = {By adding hyaluronic acid (HA) to dioctyl sodium sulfosuccinate (AOT)-stabilized gold nanotriangles (AuNTs) with an average thickness of 7.5 +/- 1 nm and an edge length of about 175 +/- 17 nm, the AOT bilayer is replaced by a polymeric HA-layer leading to biocompatible nanoplatelets. The subsequent reduction process of tetrachloroauric acid in the HA-shell surrounding the AuNTs leads to the formation of spherical gold nanoparticles on the platelet surface. With increasing tetrachloroauric acid concentration, the decoration with gold nanoparticles can be tuned. SAXS measurements reveal an increase of the platelet thickness up to around 14.5 nm, twice the initial value of bare AuNTs. HRTEM micrographs show welding phenomena between densely packed particles on the platelet surface, leading to a crumble formation while preserving the original crystal structure. Crumbles crystallized on top of the platelets enhance the Raman signal by a factor of around 20, and intensify the plasmon-driven dimerization of 4-nitrothiophenol (4-NTP) to 4,4 '-dimercaptoazobenzene in a yield of up to 50 \%. The resulting crumbled nanotriangles, with a biopolymer shell and the absorption maximum in the second window for in vivo imaging, are promising candidates for biomedical sensing.}, language = {en} } @article{HenningLiebigPrietzeletal.2020, author = {Henning, Ricky and Liebig, Ferenc and Prietzel, Claudia Christina and Klemke, Bastian and Koetz, Joachim}, title = {Gold nanotriangles with magnetite satellites}, series = {Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects}, volume = {600}, journal = {Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-7757}, doi = {10.1016/j.colsurfa.2020.124913}, pages = {7}, year = {2020}, abstract = {This work describes the synthesis of hybrid particles of gold nanotriangles (AuNTs) with magnetite nanoparticles (MNPs) by using 1-mercaptopropyl-3-trimethoxysilan (MPTMS) and L-cysteine as linker molecules. Due to the combination of superparamagnetic properties of MNPs with optical properties of the AuNTs, nanoplatelet-satellite hybrid nanostructures with combined features become available. By using MPTMS with silan groups as linker molecule a magnetic "cloud" with embedded AuNTs can be separated. In presence of L-cysteine as linker molecule at pH > pH(iso) a more unordered aggregate structure of MNPs is obtained due to the dimerization of the L-cysteine. At pH < pH(iso) water soluble positively charged AuNTs with satellite MNPs can be synthesized. The time-dependent loading with MNP satellites under release of the extinction and magnetization offer a hybrid material, which is of special relevance for biomedical applications and plasmonic catalysis.}, language = {en} } @article{KarpitschkaLiebigRiegler2017, author = {Karpitschka, Stefan and Liebig, Ferenc and Riegler, Hans}, title = {Marangoni Contraction of Evaporating Sessile Droplets of Binary Mixtures}, series = {Langmuir}, volume = {33}, journal = {Langmuir}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.7b00740}, pages = {4682 -- 4687}, year = {2017}, abstract = {The Marangoni contraction of sessile drops of a binary mixture of a volatile and a nonvolatile liquid has been investigated experimentally and theoretically. The origin of the contraction is the locally inhomogeneous evaporation rate of sessile drops. This leads to surface tension gradients and thus to a Marangoni flow. Simulations show that the interplay of Marangoni flow, capillary flow, diffusive transport, and evaporative losses can establish a quasistationary drop profile with an apparent nonzero contact angle even if both liquid components individually wet the substrate completely. Experiments with different solvents, initial mass fractions, and gaseous environments reveal a previously unknown universal power-law relation between the apparent contact angle and the relative undersaturation of the ambient atmosphere: theta(app) similar to (RHeq - RH)(1/3). This experimentally observed power law is in quantitative agreement with simulation results. The exponent can also be inferred from a scaling analysis of the hydrodynamic-evaporative evolution equations of a binary mixture of liquids with different volatilities.}, language = {en} } @article{LiebigThuenemannKoetz2016, author = {Liebig, Ferenc and Th{\"u}nemann, Andreas F. and Koetz, Joachim}, title = {Ostwald Ripening Growth Mechanism of Gold Nanotriangles in Vesicular Template Phases}, series = {Langmuir}, volume = {32}, journal = {Langmuir}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.6b02662}, pages = {10928 -- 10935}, year = {2016}, abstract = {The mechanism of nanotriangle formation in multivesicular vesicles (MMV) is investigated by using time-dependent SAXS measurements in combination with UV-vis spectroscopy, light, and transmission electron microscopy. In the first time period 6.5 nm sized spherical gold nanoparticles are formed inside of the vesicles, which build up soft nanoparticle aggregates. a) In situ SAXS experiments show a linear increase of the volume and molar mass of nanotriangles in the second time period. The volume growth rate of the triangles is 16.1 nm(3)/min, and the growth rate in the vertical direction is only 0.02 nm/min. Therefore, flat nanotriangles with a thickness of 7 nm and a diameter of 23 nm are formed. This process can be described by a diffusion limited Ostwald ripening growth mechanism. TEM micrographs visualize soft coral-like structures with thin nanoplatelets at the periphery of the aggregates, which disaggregate in the third time period into nanotriangles and spherical particles. The 16 times faster growth of nanotriangles in the lateral than that in the vertical direction is related to the adsorption of symmetry breaking components, i.e., AOT and the polyampholyte PalPhBisCarb, on the {111} facets of the gold nanoplatelets in combination with confinement effects of the vesicular template phase.}, language = {en} } @article{RajuLiebigKlemkeetal.2018, author = {Raju, Rajarshi Roy and Liebig, Ferenc and Klemke, Bastian and Koetz, Joachim}, title = {pH-responsive magnetic Pickering Janus emulsions}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {296}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {6}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-018-4321-z}, pages = {1039 -- 1046}, year = {2018}, abstract = {We report ultrasonically generated pH-responsive Pickering Janus emulsions of olive oil and silicone oil with controllable droplet size and engulfment. Chitosan was used as a pH-responsive emulsifier. The increase of pH from 2 to 6 leads to a transition from completely engulfed double emulsion droplets to dumbbell-shaped Janus droplets accompanied by a significant decrease of droplet diameter and a more homogeneous size distribution. The results can be elucidated by the conformational change of chitosan from a more extended form at pH 2 to a more flexible form at pH 4-5. Magnetic responsiveness to the emulsion was attributed by dispersing superparamagnetic nanoparticles (Fe3O4 with diameter of 13 +/- 2 nm) in the olive oil phase before preparing the Janus emulsion. Incorporation of magnetic nanoparticles leads to superior emulsion stability, drastically reduced droplet diameters, and opened the way to control movement and orientation of the Janus droplets according to an external magnetic field.}, language = {en} }