@article{KruseHerzschuh2022, author = {Kruse, Stefan and Herzschuh, Ulrike}, title = {Regional opportunities for tundra conservation in the next 1000 years}, series = {eLife}, volume = {11}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.75163}, pages = {24}, year = {2022}, abstract = {The biodiversity of tundra areas in northern high latitudes is threatened by invasion of forests under global warming. However, poorly understood nonlinear responses of the treeline ecotone mean the timing and extent of tundra losses are unclear, but policymakers need such information to optimize conservation efforts. Our individual-based model LAVESI, developed for the Siberian tundra-taiga ecotone, can help improve our understanding. Consequently, we simulated treeline migration trajectories until the end of the millennium, causing a loss of tundra area when advancing north. Our simulations reveal that the treeline follows climate warming with a severe, century-long time lag, which is overcompensated by infilling of stands in the long run even when temperatures cool again. Our simulations reveal that only under ambitious mitigation strategies (relative concentration pathway 2.6) will ~30\% of original tundra areas remain in the north but separated into two disjunct refugia.}, language = {en} } @phdthesis{Stark2021, author = {Stark, Markus}, title = {Implications of local and regional processes on the stability of metacommunities in diverse ecosystems}, doi = {10.25932/publishup-52639}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-526399}, school = {Universit{\"a}t Potsdam}, pages = {x, 167}, year = {2021}, abstract = {Anthropogenic activities such as continuous landscape changes threaten biodiversity at both local and regional scales. Metacommunity models attempt to combine these two scales and continuously contribute to a better mechanistic understanding of how spatial processes and constraints, such as fragmentation, affect biodiversity. There is a strong consensus that such structural changes of the landscape tend to negatively effect the stability of metacommunities. However, in particular the interplay of complex trophic communities and landscape structure is not yet fully understood. In this present dissertation, a metacommunity approach is used based on a dynamic and spatially explicit model that integrates population dynamics at the local scale and dispersal dynamics at the regional scale. This approach allows the assessment of complex spatial landscape components such as habitat clustering on complex species communities, as well as the analysis of population dynamics of a single species. In addition to the impact of a fixed landscape structure, periodic environmental disturbances are also considered, where a periodical change of habitat availability, temporally alters landscape structure, such as the seasonal drying of a water body. On the local scale, the model results suggest that large-bodied animal species, such as predator species at high trophic positions, are more prone to extinction in a state of large patch isolation than smaller species at lower trophic levels. Increased metabolic losses for species with a lower body mass lead to increased energy limitation for species on higher trophic levels and serves as an explanation for a predominant loss of these species. This effect is particularly pronounced for food webs, where species are more sensitive to increased metabolic losses through dispersal and a change in landscape structure. In addition to the impact of species composition in a food web for diversity, the strength of local foraging interactions likewise affect the synchronization of population dynamics. A reduced predation pressure leads to more asynchronous population dynamics, beneficial for the stability of population dynamics as it reduces the risk of correlated extinction events among habitats. On the regional scale, two landscape aspects, which are the mean patch isolation and the formation of local clusters of two patches, promote an increase in \$\beta\$-diversity. Yet, the individual composition and robustness of the local species community equally explain a large proportion of the observed diversity patterns. A combination of periodic environmental disturbance and patch isolation has a particular impact on population dynamics of a species. While the periodic disturbance has a synchronizing effect, it can even superimpose emerging asynchronous dynamics in a state of large patch isolation and unifies trends in synchronization between different species communities. In summary, the findings underline a large local impact of species composition and interactions on local diversity patterns of a metacommunity. In comparison, landscape structures such as fragmentation have a negligible effect on local diversity patterns, but increase their impact for regional diversity patterns. In contrast, at the level of population dynamics, regional characteristics such as periodic environmental disturbance and patch isolation have a particularly strong impact and contribute substantially to the understanding of the stability of population dynamics in a metacommunity. These studies demonstrate once again the complexity of our ecosystems and the need for further analysis for a better understanding of our surrounding environment and more targeted conservation of biodiversity.}, language = {en} } @misc{RomeroMujalliJeltschTiedemann2018, author = {Romero-Mujalli, Daniel and Jeltsch, Florian and Tiedemann, Ralph}, title = {Individual-based modeling of eco-evolutionary dynamics}, series = {Regional environmental change}, volume = {19}, journal = {Regional environmental change}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {1436-3798}, doi = {10.1007/s10113-018-1406-7}, pages = {1 -- 12}, year = {2018}, abstract = {A challenge for eco-evolutionary research is to better understand the effect of climate and landscape changes on species and their distribution. Populations of species can respond to changes in their environment through local genetic adaptation or plasticity, dispersal, or local extinction. The individual-based modeling (IBM) approach has been repeatedly applied to assess organismic responses to environmental changes. IBMs simulate emerging adaptive behaviors from the basic entities upon which both ecological and evolutionary mechanisms act. The objective of this review is to summarize the state of the art of eco-evolutionary IBMs and to explore to what degree they already address the key responses of organisms to environmental change. In this, we identify promising approaches and potential knowledge gaps in the implementation of eco-evolutionary mechanisms to motivate future research. Using mainly the ISI Web of Science, we reveal that most of the progress in eco-evolutionary IBMs in the last decades was achieved for genetic adaptation to novel local environmental conditions. There is, however, not a single eco-evolutionary IBM addressing the three potential adaptive responses simultaneously. Additionally, IBMs implementing adaptive phenotypic plasticity are rare. Most commonly, plasticity was implemented as random noise or reaction norms. Our review further identifies a current lack of models where plasticity is an evolving trait. Future eco-evolutionary models should consider dispersal and plasticity as evolving traits with their associated costs and benefits. Such an integrated approach could help to identify conditions promoting population persistence depending on the life history strategy of organisms and the environment they experience.}, language = {en} } @misc{ParaskevopoulouDennisWeithoffetal.2020, author = {Paraskevopoulou, Sofia and Dennis, Alice B. and Weithoff, Guntram and Tiedemann, Ralph}, title = {Temperature-dependent life history and transcriptomic responses in heat-tolerant versus heat-sensitive Brachionus rotifers}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {1012}, issn = {1866-8372}, doi = {10.25932/publishup-48228}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-482280}, pages = {17}, year = {2020}, abstract = {Thermal stress response is an essential physiological trait that determines occurrence and temporal succession in nature, including response to climate change. We compared temperature-related demography in closely related heat-tolerant and heat-sensitive Brachionus rotifer species. We found significant differences in heat response, with the heat-sensitive species adopting a strategy of long survival and low population growth, while the heat-tolerant followed the opposite strategy. In both species, we examined the genetic basis of physiological variation by comparing gene expression across increasing temperatures. Comparative transcriptomic analyses identified shared and opposing responses to heat. Interestingly, expression of heat shock proteins (hsps) was strikingly different in the two species and mirrored differences in population growth rates, showing that hsp genes are likely a key component of a species' adaptation to different temperatures. Temperature induction caused opposing patterns of expression in further functional categories including energy, carbohydrate and lipid metabolism, and in genes related to ribosomal proteins. In the heat-sensitive species, elevated temperatures caused up-regulation of genes related to meiosis induction and post-translational histone modifications. This work demonstrates the sweeping reorganizations of biological functions that accompany temperature adaptation in these two species and reveals potential molecular mechanisms that might be activated for adaptation to global warming.}, language = {en} } @article{ParaskevopoulouDennisWeithoffetal.2020, author = {Paraskevopoulou, Sofia and Dennis, Alice B. and Weithoff, Guntram and Tiedemann, Ralph}, title = {Temperature-dependent life history and transcriptomic responses in heat-tolerant versus heat-sensitive Brachionus rotifers}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-70173-0}, pages = {15}, year = {2020}, abstract = {Thermal stress response is an essential physiological trait that determines occurrence and temporal succession in nature, including response to climate change. We compared temperature-related demography in closely related heat-tolerant and heat-sensitive Brachionus rotifer species. We found significant differences in heat response, with the heat-sensitive species adopting a strategy of long survival and low population growth, while the heat-tolerant followed the opposite strategy. In both species, we examined the genetic basis of physiological variation by comparing gene expression across increasing temperatures. Comparative transcriptomic analyses identified shared and opposing responses to heat. Interestingly, expression of heat shock proteins (hsps) was strikingly different in the two species and mirrored differences in population growth rates, showing that hsp genes are likely a key component of a species' adaptation to different temperatures. Temperature induction caused opposing patterns of expression in further functional categories including energy, carbohydrate and lipid metabolism, and in genes related to ribosomal proteins. In the heat-sensitive species, elevated temperatures caused up-regulation of genes related to meiosis induction and post-translational histone modifications. This work demonstrates the sweeping reorganizations of biological functions that accompany temperature adaptation in these two species and reveals potential molecular mechanisms that might be activated for adaptation to global warming.}, language = {en} } @article{JanssenArhonditsisBeusenetal.2015, author = {Janssen, Annette B. G. and Arhonditsis, George B. and Beusen, Arthur and Bolding, Karsten and Bruce, Louise and Bruggeman, Jorn and Couture, Raoul-Marie and Downing, Andrea S. and Elliott, J. Alex and Frassl, Marieke A. and Gal, Gideon and Gerla, Daan J. and Hipsey, Matthew R. and Hu, Fenjuan and Ives, Stephen C. and Janse, Jan H. and Jeppesen, Erik and Joehnk, Klaus D. and Kneis, David and Kong, Xiangzhen and Kuiper, Jan J. and Lehmann, Moritz K. and Lemmen, Carsten and Oezkundakci, Deniz and Petzoldt, Thomas and Rinke, Karsten and Robson, Barbara J. and Sachse, Rene and Schep, Sebastiaan A. and Schmid, Martin and Scholten, Huub and Teurlincx, Sven and Trolle, Dennis and Troost, Tineke A. and Van Dam, Anne A. and Van Gerven, Luuk P. A. and Weijerman, Mariska and Wells, Scott A. and Mooij, Wolf M.}, title = {Exploring, exploiting and evolving diversity of aquatic ecosystem models: a community perspective}, series = {Aquatic ecology : the international forum covering research in freshwater and marine environments}, volume = {49}, journal = {Aquatic ecology : the international forum covering research in freshwater and marine environments}, number = {4}, publisher = {Springer}, address = {Dordrecht}, issn = {1386-2588}, doi = {10.1007/s10452-015-9544-1}, pages = {513 -- 548}, year = {2015}, abstract = {Here, we present a community perspective on how to explore, exploit and evolve the diversity in aquatic ecosystem models. These models play an important role in understanding the functioning of aquatic ecosystems, filling in observation gaps and developing effective strategies for water quality management. In this spirit, numerous models have been developed since the 1970s. We set off to explore model diversity by making an inventory among 42 aquatic ecosystem modellers, by categorizing the resulting set of models and by analysing them for diversity. We then focus on how to exploit model diversity by comparing and combining different aspects of existing models. Finally, we discuss how model diversity came about in the past and could evolve in the future. Throughout our study, we use analogies from biodiversity research to analyse and interpret model diversity. We recommend to make models publicly available through open-source policies, to standardize documentation and technical implementation of models, and to compare models through ensemble modelling and interdisciplinary approaches. We end with our perspective on how the field of aquatic ecosystem modelling might develop in the next 5-10 years. To strive for clarity and to improve readability for non-modellers, we include a glossary.}, language = {en} } @article{MischkeGinatAlSaqaratetal.2012, author = {Mischke, Steffen and Ginat, Hanan and Al-Saqarat, Bety and Almogi-Labin, Ahuva}, title = {Ostracods from water bodies in hyperarid Israel and Jordan as habitat and water chemistry indicators}, series = {Ecological indicators : integrating monitoring, assessment and management}, volume = {14}, journal = {Ecological indicators : integrating monitoring, assessment and management}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1470-160X}, doi = {10.1016/j.ecolind.2011.07.017}, pages = {87 -- 99}, year = {2012}, abstract = {The hyperarid region of Israel and Jordan covers a large area where numerous sites of Pleistocene lake sediments suggest that climate conditions were significantly wetter during the Pleistocene. This region experienced a significant increase in aridity in recent decades and the number of existing surface waters is diminishing rapidly. We studied ostracod shells from 49 pond and stream sites to determine the species distribution and to infer ecological preferences especially with respect to general differences in water movement, conductivity and ion composition. Twenty-two ostracod species were identified in total of which 12 taxa occur at three or more sites. Among the rarer species. Cyprinotus scholiosus was identified for the first time after two records from Plio- and Pleistocene sites in Yemen and Saudi Arabia. Further, Paracypretta amati was recorded and its ecological preferences discussed for the first time following the description of the species from its type locality in Sudan. Cypridopsis elongata is the only typical inhabitant of lotic habitats, strictly preferring freshwater conditions and waters with an alkalinity/Ca ratio around 1 and cations dominated by Ca(2+) and anions by HCO(3)(-). In contrast, Cyprideis torosa, Limnocythere inopinata and Heterocypris incongruens apparently prefer waters dominated by Na(+) associated with cations and Cl(-) associated with anions. Heterocypris salina and C. torosa occur over a wide conductivity (or salinity) range and in waters with alkalinity/Ca ratios around 1 and with significant alkalinity depletion. Humphcypris subterranea, Ilyocypris spp. and H. sauna are the only taxa which do not show any preference with respect to both the cation and anion dominance of the waters. The ecological preferences of the ostracod species from water bodies in the study area are discussed in detail and can be used for a qualitative assessment of the hydrodynamical and hydrochemical conditions of former water bodies in the presently hyperarid environment based on ostracod species composition analysis of Pleistocene aquatic sediments.}, language = {en} } @phdthesis{Martin2013, author = {Martin, Benjamin}, title = {Linking individual-based models and dynamic energy budget theory : lessons for ecology and ecotoxicology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67001}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {In the context of ecological risk assessment of chemicals, individual-based population models hold great potential to increase the ecological realism of current regulatory risk assessment procedures. However, developing and parameterizing such models is time-consuming and often ad hoc. Using standardized, tested submodels of individual organisms would make individual-based modelling more efficient and coherent. In this thesis, I explored whether Dynamic Energy Budget (DEB) theory is suitable for being used as a standard submodel in individual-based models, both for ecological risk assessment and theoretical population ecology. First, I developed a generic implementation of DEB theory in an individual-based modeling (IBM) context: DEB-IBM. Using the DEB-IBM framework I tested the ability of the DEB theory to predict population-level dynamics from the properties of individuals. We used Daphnia magna as a model species, where data at the individual level was available to parameterize the model, and population-level predictions were compared against independent data from controlled population experiments. We found that DEB theory successfully predicted population growth rates and peak densities of experimental Daphnia populations in multiple experimental settings, but failed to capture the decline phase, when the available food per Daphnia was low. Further assumptions on food-dependent mortality of juveniles were needed to capture the population dynamics after the initial population peak. The resulting model then predicted, without further calibration, characteristic switches between small- and large-amplitude cycles, which have been observed for Daphnia. We conclude that cross-level tests help detecting gaps in current individual-level theories and ultimately will lead to theory development and the establishment of a generic basis for individual-based models and ecology. In addition to theoretical explorations, we tested the potential of DEB theory combined with IBMs to extrapolate effects of chemical stress from the individual to population level. For this we used information at the individual level on the effect of 3,4-dichloroanailine on Daphnia. The individual data suggested direct effects on reproduction but no significant effects on growth. Assuming such direct effects on reproduction, the model was able to accurately predict the population response to increasing concentrations of 3,4-dichloroaniline. We conclude that DEB theory combined with IBMs holds great potential for standardized ecological risk assessment based on ecological models.}, language = {en} }