@misc{GuptaDongDijkweletal.2019, author = {Gupta, Saurabh and Dong, Yanni and Dijkwel, Paul P. and M{\"u}ller-R{\"o}ber, Bernd and Gechev, Tsanko S.}, title = {Genome-Wide Analysis of ROS Antioxidant Genes in Resurrection Species Suggest an Involvement of Distinct ROS Detoxification Systems during Desiccation}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {763}, issn = {1866-8372}, doi = {10.25932/publishup-43729}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437299}, pages = {22}, year = {2019}, abstract = {Abiotic stress is one of the major threats to plant crop yield and productivity. When plants are exposed to stress, production of reactive oxygen species (ROS) increases, which could lead to extensive cellular damage and hence crop loss. During evolution, plants have acquired antioxidant defense systems which can not only detoxify ROS but also adjust ROS levels required for proper cell signaling. Ascorbate peroxidase (APX), glutathione peroxidase (GPX), catalase (CAT) and superoxide dismutase (SOD) are crucial enzymes involved in ROS detoxification. In this study, 40 putative APX, 28 GPX, 16 CAT, and 41 SOD genes were identified from genomes of the resurrection species Boea hygrometrica, Selaginella lepidophylla, Xerophyta viscosa, and Oropetium thomaeum, and the mesophile Selaginella moellendorffi. Phylogenetic analyses classified the APX, GPX, and SOD proteins into five clades each, and CAT proteins into three clades. Using co-expression network analysis, various regulatory modules were discovered, mainly involving glutathione, that likely work together to maintain ROS homeostasis upon desiccation stress in resurrection species. These regulatory modules also support the existence of species-specific ROS detoxification systems. The results suggest molecular pathways that regulate ROS in resurrection species and the role of APX, GPX, CAT and SOD genes in resurrection species during stress.}, language = {en} } @article{GuptaDongDijkweletal.2019, author = {Gupta, Saurabh and Dong, Yanni and Dijkwel, Paul P. and M{\"u}ller-R{\"o}ber, Bernd and Gechev, Tsanko S.}, title = {Genome-Wide Analysis of ROS Antioxidant Genes in Resurrection Species Suggest an Involvement of Distinct ROS Detoxification Systems during Desiccation}, series = {International Journal of Molecular Sciences}, volume = {20}, journal = {International Journal of Molecular Sciences}, number = {12}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms20123101}, pages = {22}, year = {2019}, abstract = {Abiotic stress is one of the major threats to plant crop yield and productivity. When plants are exposed to stress, production of reactive oxygen species (ROS) increases, which could lead to extensive cellular damage and hence crop loss. During evolution, plants have acquired antioxidant defense systems which can not only detoxify ROS but also adjust ROS levels required for proper cell signaling. Ascorbate peroxidase (APX), glutathione peroxidase (GPX), catalase (CAT) and superoxide dismutase (SOD) are crucial enzymes involved in ROS detoxification. In this study, 40 putative APX, 28 GPX, 16 CAT, and 41 SOD genes were identified from genomes of the resurrection species Boea hygrometrica, Selaginella lepidophylla, Xerophyta viscosa, and Oropetium thomaeum, and the mesophile Selaginella moellendorffi. Phylogenetic analyses classified the APX, GPX, and SOD proteins into five clades each, and CAT proteins into three clades. Using co-expression network analysis, various regulatory modules were discovered, mainly involving glutathione, that likely work together to maintain ROS homeostasis upon desiccation stress in resurrection species. These regulatory modules also support the existence of species-specific ROS detoxification systems. The results suggest molecular pathways that regulate ROS in resurrection species and the role of APX, GPX, CAT and SOD genes in resurrection species during stress.}, language = {en} } @misc{PetrovHilleMuellerRoeberetal.2015, author = {Petrov, Veselin and Hille, Jacques and M{\"u}ller-R{\"o}ber, Bernd and Gechev, Tsanko S.}, title = {ROS-mediated abiotic stress-induced programmed cell death in plants}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {425}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406481}, pages = {16}, year = {2015}, abstract = {During the course of their ontogenesis plants are continuously exposed to a large variety of abiotic stress factors which can damage tissues and jeopardize the survival of the organism unless properly countered. While animals can simply escape and thus evade stressors, plants as sessile organisms have developed complex strategies to withstand them. When the intensity of a detrimental factor is high, one of the defense programs employed by plants is the induction of programmed cell death (PCD). This is an active, genetically controlled process which is initiated to isolate and remove damaged tissues thereby ensuring the survival of the organism. The mechanism of PCD induction usually includes an increase in the levels of reactive oxygen species (ROS) which are utilized as mediators of the stress signal. Abiotic stress-induced PCD is not only a process of fundamental biological importance, but also of considerable interest to agricultural practice as it has the potential to significantly influence crop yield. Therefore, numerous scientific enterprises have focused on elucidating the mechanisms leading to and controlling PCD in response to adverse conditions in plants. This knowledge may help develop novel strategies to obtain more resilient crop varieties with improved tolerance and enhanced productivity. The aim of the present review is to summarize the recent advances in research on ROS-induced PCD related to abiotic stress and the role of the organelles in the process.}, language = {en} } @misc{PetrovHilleMuellerRoeberetal.2015, author = {Petrov, Veselin and Hille, Jacques and M{\"u}ller-R{\"o}ber, Bernd and Gechev, Tsanko S.}, title = {ROS-mediated abiotic stress-induced programmed cell death in plants}, series = {Frontiers in plant science}, volume = {6}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2015.00069}, pages = {16}, year = {2015}, abstract = {During the course of their ontogenesis plants are continuously exposed to a large variety of abiotic stress factors which can damage tissues and jeopardize the survival of the organism unless properly countered. While animals can simply escape and thus evade stressors, plants as sessile organisms have developed complex strategies to withstand them. When the intensity of a detrimental factor is high, one of the defense programs employed by plants is the induction of programmed cell death (PCD). This is an active, genetically controlled process which is initiated to isolate and remove damaged tissues thereby ensuring the survival of the organism. The mechanism of PCD induction usually includes an increase in the levels of reactive oxygen species (ROS) which are utilized as mediators of the stress signal. Abiotic stress-induced PCD is not only a process of fundamental biological importance, but also of considerable interest to agricultural practice as it has the potential to significantly influence crop yield. Therefore, numerous scientific enterprises have focused on elucidating the mechanisms leading to and controlling PCD in response to adverse conditions in plants. This knowledge may help develop novel strategies to obtain more resilient crop varieties with improved tolerance and enhanced productivity. The aim of the present review is to summarize the recent advances in research on ROS-induced PCD related to abiotic stress and the role of the organelles in the process.}, language = {en} }