@article{SalertKruegerBagnichetal.2013, author = {Salert, Beatrice Ch. D. and Krueger, Hartmut and Bagnich, Sergey A. and Unger, Thomas and Jaiser, Frank and Al-Sa'di, Mahmoud and Neher, Dieter and Hayer, Anna and Eberle, Thomas}, title = {New polymer matrix system for phosphorescent organic light-emitting diodes and the role of the small molecular co-host}, series = {Journal of polymer science : A, Polymer chemistry}, volume = {51}, journal = {Journal of polymer science : A, Polymer chemistry}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0887-624X}, doi = {10.1002/pola.26409}, pages = {601 -- 613}, year = {2013}, abstract = {A new matrix system for phosphorescent organic light-emitting diodes (OLEDs) based on an electron transporting component attached to an inert polymer backbone, an electronically neutral co-host, and a phosphorescent dye that serves as both emitter and hole conductor are presented. The inert co-host is used either as small molecules or covalently connected to the same chain as the electron-transporting host. The use of a small molecular inert co-host in the active layer is shown to be highly advantageous in comparison to a purely polymeric matrix bearing the same functionalities. Analysis of the dye phosphorescence decay in pure polymer, small molecular co-host film, and their blend lets to conclude that dye molecules distribute mostly in the small molecular co-host phase, where the co-host prevents agglomeration and self-quenching of the phosphorescence as well as energy transfer to the electron transporting units. In addition, the co-host accumulates at the anode interface where it acts as electron blocking layer and improves hole injection. This favorable phase separation between polymeric and small molecular components results in devices with efficiencies of about 47 cd/A at a luminance of 1000 cd/m(2). Investigation of OLED degradation demonstrates the presence of two time regimes: one fast component that leads to a strong decrease at short times followed by a slower decrease at longer times. Unlike the long time degradation, the efficiency loss that occurs at short times is reversible and can be recovered by annealing of the device at 180 degrees C. We also show that the long-time degradation must be related to a change of the optical and electrical bulk properties.}, language = {en} } @article{HoffmannJaiserHayeretal.2013, author = {Hoffmann, Sebastian T. and Jaiser, Frank and Hayer, Anna and Baessler, Heinz and Unger, Thomas and Athanasopoulos, Stavros and Neher, Dieter and Koehler, Anna}, title = {How Do Disorder, Reorganization, and Localization Influence the Hole Mobility in Conjugated Copolymers?}, series = {JOURNAL OF THE AMERICAN CHEMICAL SOCIETY}, volume = {135}, journal = {JOURNAL OF THE AMERICAN CHEMICAL SOCIETY}, number = {5}, publisher = {AMER CHEMICAL SOC}, address = {WASHINGTON}, issn = {0002-7863}, doi = {10.1021/ja308820j}, pages = {1772 -- 1782}, year = {2013}, abstract = {In order to unravel the intricate interplay between disorder effects, molecular reorganization, and charge carrier localization, a comprehensive study was conducted on hole transport in a series of conjugated alternating phenanthrene indenofluorene copolymers. Each polymer in the series contained one further comonomer comprising monoamines, diamines, or amine-free structures, whose influence on the electronic, optical, and charge transport properties was studied. The series covered a wide range of highest occupied molecular orbital (HOMO) energies as determined by cyclovoltammetry. The mobility, inferred from time-of-flight (ToF) experiments as a function of temperature and electric field, was found to depend exponentially on the HOMO energy. Since possible origins for this effect include energetic disorder, polaronic effects, and wave function localization, the relevant parameters were determined using a range of methods. Disorder and molecular reorganization were established first by an analysis of absorption and emission measurements and second by an analysis of the ToF measurements. In addition, density functional theory calculations were carried out to determine how localized or delocalized holes on a polymer chain are and to compare calculated reorganization energies with those that have been inferred from optical spectra. In summary, we conclude that molecular reorganization has little effect on the hole mobility in this system while both disorder effects and hole localization in systems with low-lying HOMOs are predominant. In particular, as the energetic disorder is comparable for the copolymers, the absolute value of the hole mobility at room temperature is determined by the hole localization associated with the triarylamine moieties.}, language = {en} } @article{MakHayerPascuetal.2005, author = {Mak, Chris S. K. and Hayer, Anna and Pascu, S. I. and Watkins, Scott E. and Holmes, Andrew B. and K{\"o}hler, Anna and Friend, Richard H.}, title = {Blue-to-green electrophosphorescence of iridium-based cyclometallated materials.}, issn = {0022-4936}, doi = {10.1039/b508695gb70}, year = {2005}, language = {en} } @article{HayerKoehlerArisietal.2004, author = {Hayer, Anna and K{\"o}hler, Anna and Arisi, E. and Bergenti, I. and Dediu, A. and Taliani, C. and Al-Suti, Mohammed K. and Khan, Muhammad S.}, title = {Polymer light-emitting diodes with spin-polarised charge injection.}, issn = {0379-6779}, year = {2004}, language = {en} } @article{HayerKhanFriendetal.2005, author = {Hayer, Anna and Khan, A. L. T. and Friend, Richard H. and K{\"o}hler, Anna}, title = {Morphology dependence of the triplet excited state formation and absorption in polyfluorene}, year = {2005}, language = {en} } @article{ZhangHayerAlSutietal.2006, author = {Zhang, Ning and Hayer, Anna and Al-Suti, Mohammed K. and Al-Belushi, Rayya A. and Khan, Muhammad S. and K{\"o}hler, Anna}, title = {The effect of delocalization on the exchange energy in meta- and para-linked Pt-containing carbazole polymers and monomers}, doi = {10.1063/1.2200351}, year = {2006}, abstract = {A series of novel platinum-containing carbazole monomers and polymers was synthesized and fully characterized by UV-VIS absorption, luminescence, and photoinduced absorption studies. In these compounds, a carbazole unit is incorporated into the main chain via either a para- or a meta-linkage. We discuss the effects of linkage and polymerization on the energy levels of S-1, T-1, and T-n. The S-1-T-1 splitting observed for the meta-linked monomer (0.4 eV) is only half of that in the para-linked monomer (0.8 eV). Upon polymerization, the exchange energy in the para- linked compound reduces, yet still remains larger than in the meta-linked polymer. We attribute the difference in exchange energy to the difference in wave function overlap between electron and hole in these compounds. (c) 2006 American Institute of Physics}, language = {en} } @article{HayerdeHalleuxKoehleretal.2006, author = {Hayer, Anna and de Halleux, Veronique and K{\"o}hler, Anna and El-Garoughy, Abdel and Meijer, E. W. and Barbera, Joaquin and Tant, Julien and Levin, Jeremy and Lehmann, Matthias and Gierschner, Johannes and Cornil, Jerome and Geerts, Yves Henri}, title = {Highly fluorescent crystalline and liquid crystalline columnar phases of pyrene-based structures}, issn = {1520-6106}, doi = {10.1021/Jp0573689}, year = {2006}, abstract = {A concept for highly ordered solid-state structures with bright fluorescence is proposed: liquid crystals based on tetraethynylpyrene chromophores, where the rigid core is functionalized with flexible, promesogenic alkoxy chains. The synthesis of this novel material is presented. The therniotropic properties are studied by means of differential scanning calorimetry (DSC), cross-polarized optical microscopy (POM), and X-ray diffraction. The mesogen possesses an enantiotropic Col(h) phase over a large temperature range before clearing. The material is highly fluorescent in solution and, most remarkably, in the condensed state, with a broad, strongly red shifted emission. Fluorescence quantum yields (Phi(F)) have been determined to be 70\% in dichloromethane solution and 62\% in the solid state. Concentration- and temperature-dependent absorption and emission studies as well as quantum-chemical calculations on isolated molecules and dimers are used to clarify the type of intermolecular interactions present as well as their influence on the fluorescence quantum yield and spectral properties of the material. The high luminescence efficiency in the solid state is ascribed to rotated chromophores, leading to an optically allowed lowest optical transition}, language = {en} }