@article{delValleMuellerRomero2018, author = {del Valle, Maria Victoria and M{\"u}ller, A. L. and Romero, G. E.}, title = {High-energy radiation from collisions of high-velocity clouds and the Galactic disc}, series = {Monthly notices of the Royal Astronomical Society}, volume = {475}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx2984}, pages = {4298 -- 4308}, year = {2018}, abstract = {High-velocity clouds (HVCs) are interstellar clouds of atomic hydrogen that do not follow normal Galactic rotation and have velocities of a several hundred kilometres per second. A considerable number of these clouds are falling down towards the Galactic disc. HVCs form large and massive complexes, so if they collide with the disc a great amount of energy would be released into the interstellar medium. The cloud-disc interaction produces two shocks: one propagates through the cloud and the other through the disc. The properties of these shocks depend mainly on the cloud velocity and the disc-cloud density ratio. In this work, we study the conditions necessary for these shocks to accelerate particles by diffusive shock acceleration and we study the non-thermal radiation that is produced. We analyse particle acceleration in both the cloud and disc shocks. Solving a time-dependent two-dimensional transport equation for both relativistic electrons and protons, we obtain particle distributions and non-thermal spectral energy distributions. In a shocked cloud, significant synchrotron radio emission is produced along with soft gamma rays. In the case of acceleration in the shocked disc, the non-thermal radiation is stronger; the gamma rays, of leptonic origin, might be detectable with current instruments. A large number of protons are injected into the Galactic interstellar medium, and locally exceed the cosmic ray background. We conclude that under adequate conditions the contribution from HVC-disc collisions to the galactic population of relativistic particles and the associated extended non-thermal radiation might be important.}, language = {en} } @article{delVallePohl2018, author = {del Valle, Maria Victoria and Pohl, Martin}, title = {Nonthermal emission from Stellar Bow Shocks}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {864}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aad333}, pages = {14}, year = {2018}, abstract = {Since the detection of nonthermal radio emission from the bow shock of the massive runaway star BD +43 degrees 3654, simple models have predicted high-energy emission, at X-rays and gamma-rays, from these Galactic sources. Observational searches for this emission so far give no conclusive evidence but a few candidates at gamma-rays. In this work we aim at developing a more sophisticated model for the nonthermal emission from massive runaway star bow shocks. The main goal is to establish whether these systems are efficient nonthermal emitters, even if they are not strong enough yet to be detected. For modeling the collision between the stellar wind and the interstellar medium we use 2D hydrodynamic simulations. We then adopt the flow profile of the wind and the ambient medium obtained with the simulation as the plasma state for solving the transport of energetic particles injected in the system, as well as the nonthermal emission they produce. For this purpose we solve a 3D (two spatial vertical bar energy) advection-diffusion equation in the test-particle approximation. We find that a massive runaway star with a powerful wind converts 0.16\%-0.4\% of the power injected in electrons into nonthermal emission, mostly produced by inverse Compton scattering of dust-emitted photons by relativistic electrons, and second by synchrotron radiation. This represents a fraction of similar to 10(-5) to 10(-4) of the wind kinetic power. Given the better sensibility of current instruments at radio wavelengths, these systems are more prone to be detected at radio through the synchrotron emission they produce rather than at gamma energies.}, language = {en} } @article{SanchezAyasodelValleMartietal.2018, author = {Sanchez-Ayaso, Mar{\´i}a de la Estrella and del Valle, Maria Victoria and Marti, Josep and Romero, G. E. and Luque-Escamilla, Pedro Luis}, title = {Possible association of two Stellar Bowshocks with Unidentified Fermi Sources}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {861}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aac7c7}, pages = {9}, year = {2018}, abstract = {The bowshocks of runaway stars had been theoretically proposed as gamma-ray sources. However, this hypothesis has not been confirmed by observations to date. In this paper, we present two runaway stars (lambda Cep and LS 2355) whose bowshocks are coincident with the unidentified Fermi gamma-ray sources 3FLG J2210.1+5925 and 3FGL J1128.7-6232, respectively. After performing a cross-correlation between different catalogs at distinct wavelengths, we found that these bowshocks are the most peculiar objects in the Fermi position ellipses. Then we computed the inverse Compton emission and fitted the Fermi data in order to test the viability of both runaway stars as potential counterparts of the two high-energy sources. We obtained very reasonable values for the fitted parameters of both stars. We also evaluated the possibility for the source 3FGL J1128.7-6232, which is positionally coincident with a H II region, to be the result of background cosmic-ray protons interacting with the matter of the cloud, as well as the probability of a pure chance association. We conclude that the gamma rays from these Fermi sources might be produced in the bowshocks of the considered runaway stars. In such a case, these would be the first sources of this class ever detected at gamma rays.}, language = {en} }