@article{NizardoSchanzenbachSchoenemannetal.2018, author = {Nizardo, Noverra M. and Schanzenbach, Dirk and Sch{\"o}nemann, Eric and Laschewsky, Andre}, title = {Exploring poly(ethylene glycol)-polyzwitterion diblock copolymers as biocompatible smart macrosurfactants featuring UCST-phase behavior in normal saline solution}, series = {Polymers}, volume = {10}, journal = {Polymers}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym10030325}, pages = {22}, year = {2018}, abstract = {Nonionic-zwitterionic diblock copolymers are designed to feature a coil-to-globule collapse transition with an upper critical solution temperature (UCST) in aqueous media, including physiological saline solution. The block copolymers that combine presumably highly biocompatible blocks are synthesized by chain extension of a poly(ethylene glycol) (PEG) macroinitiator via atom transfer radical polymerization (ATRP) of sulfobetaine and sulfabetaine methacrylates. Their thermoresponsive behavior is studied by variable temperature turbidimetry and H-1 NMR spectroscopy. While the polymers with polysulfobetaine blocks exhibit phase transitions in the physiologically interesting window of 30-50 degrees C only in pure aqueous solution, the polymers bearing polysulfabetaine blocks enabled phase transitions only in physiological saline solution. By copolymerizing a pair of structurally closely related sulfo-and sulfabetaine monomers, thermoresponsive behavior can be implemented in aqueous solutions of both low and high salinity. Surprisingly, the presence of the PEG blocks can affect the UCST-transitions of the polyzwitterions notably. In specific cases, this results in "schizophrenic" thermoresponsive behavior displaying simultaneously an UCST and an LCST (lower critical solution temperature) transition. Exploratory experiments on the UCST-transition triggered the encapsulation and release of various solvatochromic fluorescent dyes as model "cargos" failed, apparently due to the poor affinity even of charged organic compounds to the collapsed state of the polyzwitterions.}, language = {en} } @article{NoackSchanzenbachKoetzetal.2018, author = {Noack, Sebastian and Schanzenbach, Dirk and Koetz, Joachim and Schlaad, Helmut}, title = {Polylactide-based amphiphilic block copolymers}, series = {Macromolecular rapid communications}, volume = {40}, journal = {Macromolecular rapid communications}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201800639}, pages = {6}, year = {2018}, abstract = {The aqueous self-assembly behavior of a series of poly(ethylene glycol)-poly(l-/d-lactide) block copolymers and corresponding stereocomplexes is examined by differential scanning calorimetry, dynamic light scattering, and transmission electron microscopy. Block copolymers assemble into spherical micelles and worm-like aggregates at room temperature, whereby the fraction of the latter seemingly increases with decreasing lactide weight fraction or hydrophobicity. The formation of the worm-like aggregates arises from the crystallization of the polylactide by which the spherical micelles become colloidally unstable and fuse epitaxically with other micelles. The self-assembly behavior of the stereocomplex aggregates is found to be different from that of the block copolymers, resulting in rather irregular-shaped clusters of spherical micelles and pearl-necklace-like structures.}, language = {en} }