@article{XiongFangOsipovetal.2018, author = {Xiong, Hui and Fang, Li and Osipov, Timur and Kling, Nora G. and Wolf, Thomas J. A. and Sistrunk, Emily and Obaid, Razib and G{\"u}hr, Markus and Berrah, Nora}, title = {Fragmentation of endohedral fullerene Ho3N@C-80 in an intense femtosecond near-infrared laser field}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {97}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9926}, doi = {10.1103/PhysRevA.97.023419}, pages = {7}, year = {2018}, abstract = {The fragmentation of gas phase endohedral fullerene, Ho3N@C-80, was investigated using femtosecond near-infrared laser pulses with an ion velocity map imaging spectrometer. We observed that Ho+ abundance associated with carbon cage opening dominates at an intensity of 1.1 x 10(14) W/cm(2). As the intensity increases, the Ho+ yield associated with multifragmentation of the carbon cage exceeds the prominence of Ho+ associated with the gentler carbon cage opening. Moreover, the power law dependence of Ho+ on laser intensity indicates that the transition of the most likely fragmentation mechanisms occurs around 2.0 x 10(14) W/cm(2).}, language = {en} }