@misc{HeckMichaeliBaldetal.2018, author = {Heck, Christian and Michaeli, Yael and Bald, Ilko and Ebenstein, Yuval}, title = {Analytical epigenetics}, series = {Current Opinion in Biotechnology}, volume = {55}, journal = {Current Opinion in Biotechnology}, publisher = {Elsevier}, address = {London}, issn = {0958-1669}, doi = {10.1016/j.copbio.2018.09.006}, pages = {151 -- 158}, year = {2018}, abstract = {The field of epigenetics describes the relationship between genotype and phenotype, by regulating gene expression without changing the canonical base sequence of DNA. It deals with molecular genomic information that is encoded by a rich repertoire of chemical modifications and molecular interactions. This regulation involves DNA, RNA and proteins that are enzymatically tagged with small molecular groups that alter their physical and chemical properties. It is now clear that epigenetic alterations are involved in development and disease, and thus, are the focus of intensive research. The ability to record epigenetic changes and quantify them in rare medical samples is critical for next generation diagnostics. Optical detection offers the ultimate single-molecule sensitivity and the potential for spectral multiplexing. Here we review recent progress in ultrasensitive optical detection of DNA and histone modifications.}, language = {en} }