@book{VogelGiese2013, author = {Vogel, Thomas and Giese, Holger}, title = {Model-driven engineering of adaptation engines for self-adaptive software : executable runtime megamodels}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-227-8}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63825}, publisher = {Universit{\"a}t Potsdam}, pages = {vi, 59}, year = {2013}, abstract = {The development of self-adaptive software requires the engineering of an adaptation engine that controls and adapts the underlying adaptable software by means of feedback loops. The adaptation engine often describes the adaptation by using runtime models representing relevant aspects of the adaptable software and particular activities such as analysis and planning that operate on these runtime models. To systematically address the interplay between runtime models and adaptation activities in adaptation engines, runtime megamodels have been proposed for self-adaptive software. A runtime megamodel is a specific runtime model whose elements are runtime models and adaptation activities. Thus, a megamodel captures the interplay between multiple models and between models and activities as well as the activation of the activities. In this article, we go one step further and present a modeling language for ExecUtable RuntimE MegAmodels (EUREMA) that considerably eases the development of adaptation engines by following a model-driven engineering approach. We provide a domain-specific modeling language and a runtime interpreter for adaptation engines, in particular for feedback loops. Megamodels are kept explicit and alive at runtime and by interpreting them, they are directly executed to run feedback loops. Additionally, they can be dynamically adjusted to adapt feedback loops. Thus, EUREMA supports development by making feedback loops, their runtime models, and adaptation activities explicit at a higher level of abstraction. Moreover, it enables complex solutions where multiple feedback loops interact or even operate on top of each other. Finally, it leverages the co-existence of self-adaptation and off-line adaptation for evolution.}, language = {en} } @book{OPUS4-6247, title = {F{\"u}nfter Deutscher IPv6 Gipfel 2012}, editor = {Meinel, Christoph and Sack, Harald}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-225-4}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63947}, publisher = {Universit{\"a}t Potsdam}, pages = {110}, year = {2013}, abstract = {Am 29. und 30. November 2012 fand am Hasso-Plattner-Institut f{\"u}r Softwaresystemtechnik GmbH in Potsdam der 5. Deutsche IPv6 Gipfel 2012 statt, als dessen Dokumentation der vorliegende technische Report dient. Wie mit den vorhergegangenen nationalen IPv6 Gipfeln verfolgte der Deutsche IPv6-Rat auch mit dem 5. Gipfel, der unter dem Motto „IPv6- der Wachstumstreiber f{\"u}r die Deutsche Wirtschaft" stand, das Ziel, Einblicke in aktuelle Entwicklungen rund um den Einsatz von IPv6 zu geben. Unter anderem wurden die Vorz{\"u}ge des neue Internetstandards IPv6 vorgestellt und {\"u}ber die Anwendung von IPv6 auf dem Massenmarkt, sowie den Einsatz von IPv6 in Unternehmen und in der {\"o}ffentlichen Verwaltung referiert. Weitere Themen des Gipfels bezogen sich auf Aktionen und Bedingungen in Unternehmen und Privathaushalten, die f{\"u}r den Umstieg auf IPv6 notwendig sind und welche Erfahrungen dabei bereits gesammelt werden konnten. Neben Vortr{\"a}gen des Bundesbeauftragten f{\"u}r Datenschutz Peter Schaar und des Gesch{\"a}ftsf{\"u}hrers der Technik Telekom Deutschland GmbH, Bruno Jacobfeuerborn, wurden weiteren Beitr{\"a}ge hochrangiger Vertretern aus Politik, Wissenschaft und Wirtschaft pr{\"a}sentiert, die in diesem technischen Bericht zusammengestellt sind.}, language = {de} } @phdthesis{Kyprianidis2013, author = {Kyprianidis, Jan Eric}, title = {Structure adaptive stylization of images and video}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64104}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {In the early days of computer graphics, research was mainly driven by the goal to create realistic synthetic imagery. By contrast, non-photorealistic computer graphics, established as its own branch of computer graphics in the early 1990s, is mainly motivated by concepts and principles found in traditional art forms, such as painting, illustration, and graphic design, and it investigates concepts and techniques that abstract from reality using expressive, stylized, or illustrative rendering techniques. This thesis focuses on the artistic stylization of two-dimensional content and presents several novel automatic techniques for the creation of simplified stylistic illustrations from color images, video, and 3D renderings. Primary innovation of these novel techniques is that they utilize the smooth structure tensor as a simple and efficient way to obtain information about the local structure of an image. More specifically, this thesis contributes to knowledge in this field in the following ways. First, a comprehensive review of the structure tensor is provided. In particular, different methods for integrating the minor eigenvector field of the smoothed structure tensor are developed, and the superiority of the smoothed structure tensor over the popular edge tangent flow is demonstrated. Second, separable implementations of the popular bilateral and difference of Gaussians filters that adapt to the local structure are presented. These filters avoid artifacts while being computationally highly efficient. Taken together, both provide an effective way to create a cartoon-style effect. Third, a generalization of the Kuwahara filter is presented that avoids artifacts by adapting the shape, scale, and orientation of the filter to the local structure. This causes directional image features to be better preserved and emphasized, resulting in overall sharper edges and a more feature-abiding painterly effect. In addition to the single-scale variant, a multi-scale variant is presented, which is capable of performing a highly aggressive abstraction. Fourth, a technique that builds upon the idea of combining flow-guided smoothing with shock filtering is presented, allowing for an aggressive exaggeration and an emphasis of directional image features. All presented techniques are suitable for temporally coherent per-frame filtering of video or dynamic 3D renderings, without requiring expensive extra processing, such as optical flow. Moreover, they can be efficiently implemented to process content in real-time on a GPU.}, language = {en} } @book{OPUS4-6157, title = {Theories and intricacies of information security problems}, editor = {Kayem, Anne V. D. M. and Meinel, Christoph}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-204-9}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60455}, publisher = {Universit{\"a}t Potsdam}, pages = {i, 48}, year = {2013}, abstract = {INTRICATE/SEC 2012 Workshop held in Conjunction with The 11th Information Security South Africa Conference (ISSA 2012).}, language = {de} }