@article{MetzlerBauerRasmussenetal.2015, author = {Metzler, Ralf and Bauer, Maximilian and Rasmussen, Emil S. and Lomholt, Michael A.}, title = {Real sequence effects on the search dynamics of transcription factors on DNA}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {10072}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep10072}, year = {2015}, abstract = {Recent experiments show that transcription factors (TFs) indeed use the facilitated diffusion mechanism to locate their target sequences on DNA in living bacteria cells: TFs alternate between sliding motion along DNA and relocation events through the cytoplasm. From simulations and theoretical analysis we study the TF-sliding motion for a large section of the DNA-sequence of a common E. coli strain, based on the two-state TF-model with a fast-sliding search state and a recognition state enabling target detection. For the probability to detect the target before dissociating from DNA the TF-search times self-consistently depend heavily on whether or not an auxiliary operator (an accessible sequence similar to the main operator) is present in the genome section. Importantly, within our model the extent to which the interconversion rates between search and recognition states depend on the underlying nucleotide sequence is varied. A moderate dependence maximises the capability to distinguish between the main operator and similar sequences. Moreover, these auxiliary operators serve as starting points for DNA looping with the main operator, yielding a spectrum of target detection times spanning several orders of magnitude. Auxiliary operators are shown to act as funnels facilitating target detection by TFs.}, language = {en} } @article{MetzlerCherstvyChechkinetal.2015, author = {Metzler, Ralf and Cherstvy, Andrey G. and Chechkin, Aleksei V. and Bodrova, Anna S.}, title = {Ultraslow scaled Brownian motion}, series = {New journal of physics : the open-access journal for physics}, volume = {17}, journal = {New journal of physics : the open-access journal for physics}, number = {063038}, publisher = {Dt. Physikalische Ges., IOP}, address = {Bad Honnef, London}, issn = {1367-2630}, doi = {10.1088/1367-2630/17/6/063038}, year = {2015}, abstract = {We define and study in detail utraslow scaled Brownian motion (USBM) characterized by a time dependent diffusion coefficient of the form . For unconfined motion the mean squared displacement (MSD) of USBM exhibits an ultraslow, logarithmic growth as function of time, in contrast to the conventional scaled Brownian motion. In a harmonic potential the MSD of USBM does not saturate but asymptotically decays inverse-proportionally to time, reflecting the highly non-stationary character of the process. We show that the process is weakly non-ergodic in the sense that the time averaged MSD does not converge to the regular MSD even at long times, and for unconfined motion combines a linear lag time dependence with a logarithmic term. The weakly non-ergodic behaviour is quantified in terms of the ergodicity breaking parameter. The USBM process is also shown to be ageing: observables of the system depend on the time gap between initiation of the test particle and start of the measurement of its motion. Our analytical results are shown to agree excellently with extensive computer simulations.}, language = {en} } @phdthesis{Maerten2015, author = {Maerten, Lena}, title = {Spectroscopic perspectives on ultrafast coupling phenomena in perovskite oxides}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77623}, school = {Universit{\"a}t Potsdam}, year = {2015}, abstract = {In this thesis, I study ultrafast dynamics in perovskite oxides using time resolved broadband spectroscopy. I focus on the observation of coherent phonon propagation by time resolved Brillouin scattering: following the excition of metal transducer films with a femtosecond infrared pump pulse, coherent phonon dynamics in the GHz frequency range are triggered. Their propagation is monitored using a delayed white light probe pulse. The technique is illustrated on various thin films and multilayered samples. I apply the technique to investigate the linear and nonlinear acoustic response in bulk SrTiO_3, which displays a ferroelastic phase transition from a cubic to a tetragonal structural phase at T_a=105 K. In the linear regime, I observe a coupling of the observed acoustic phonon mode to the softening optic modes describing the phase transition. In the nonlinear regime, I find a giant slowing down of the sound velocity in the low temperature phase that is only observable for a strain amplitude exceeding the tetragonality of the material. It is attributed to a coupling of the high frequency phonons to ferroelastic domain walls in the material. I propose a new mechanism for the coupling of strain waves to the domain walls that is only effective for high amplitude strain. A detailed study of the phonon attenuation across a wide temperature range shows that the phonon attenuation at low temperatures is influenced by the domain configuration, which is determined by interface strain. Preliminary measurements on magnetic-ferroelectric multilayers reveal that the excitation fluence needs to be carefully controlled when dynamics at phase transitions are studied.}, language = {en} } @article{GoychukGoychuk2015, author = {Goychuk, Igor and Goychuk, Andriy}, title = {Stochastic Wilson}, series = {New journal of physics}, volume = {17}, journal = {New journal of physics}, number = {4}, publisher = {Deutsche Physikalische Gesellschaft, Institute of Physics}, address = {Bad Honnef, London}, issn = {1367-2630}, doi = {10.1088/1367-2630/17/4/045029}, year = {2015}, abstract = {We consider a simple Markovian class of the stochastic Wilson-Cowan type models of neuronal network dynamics, which incorporates stochastic delay caused by the existence of a refractory period of neurons. From the point of view of the dynamics of the individual elements, we are dealing with a network of non-Markovian stochastic two-state oscillators with memory, which are coupled globally in a mean-field fashion. This interrelation of a higher-dimensional Markovian and lower-dimensional non-Markovian dynamics is discussed in its relevance to the general problem of the network dynamics of complex elements possessing memory. The simplest model of this class is provided by a three-state Markovian neuron with one refractory state, which causes firing delay with an exponentially decaying memory within the two-state reduced model. This basic model is used to study critical avalanche dynamics (the noise sustained criticality) in a balanced feedforward network consisting of the excitatory and inhibitory neurons. Such avalanches emerge due to the network size dependent noise (mesoscopic noise). Numerical simulations reveal an intermediate power law in the distribution of avalanche sizes with the critical exponent around -1.16. We show that this power law is robust upon a variation of the refractory time over several orders of magnitude. However, the avalanche time distribution is biexponential. It does not reflect any genuine power law dependence.}, language = {en} } @phdthesis{Wieland2015, author = {Wieland, Volkmar}, title = {Particle-in-cell simulations of perpendicular supernova shock fronts}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-74532}, school = {Universit{\"a}t Potsdam}, pages = {v, 89}, year = {2015}, abstract = {The origin of cosmic rays was the subject of several studies for over a century. The investigations done within this dissertation are one small step to shed some more light on this mystery. Locating the sources of cosmic rays is not trivial due to the interstellar magnetic field. However, the Hillas criterion allows us to arrive at the conclusion that supernova remnants are our main suspect for the origin of galactic cosmic rays. The mechanism by which they are accelerating particles is found within the field of shock physics as diffusive shock acceleration. To allow particles to enter this process also known as Fermi acceleration pre-acceleration processes like shock surfing acceleration and shock drift acceleration are necessary. Investigating the processes happening in the plasma shocks of supernova remnants is possible by utilising a simplified model which can be simulated on a computer using Particle-in-Cell simulations. We developed a new and clean setup to simulate the formation of a double shock, i.e., consisting of a forward and a reverse shock and a contact discontinuity, by the collision of two counter-streaming plasmas, in which a magnetic field can be woven into. In a previous work, we investigated the processes at unmagnetised and at magnetised parallel shocks, whereas in the current work, we move our investigation on to magnetised perpendicular shocks. Due to a much stronger confinement of the particles to the collision region the perpendicular shock develops much faster than the parallel shock. On the other hand, this leads to much weaker turbulence. We are able to find indications for shock surfing acceleration and shock drift acceleration happening at the two shocks leading to populations of pre-accelerated particles that are suitable as a seed population to be injected into further diffusive shock acceleration to be accelerated to even higher energies. We observe the development of filamentary structures in the shock ramp of the forward shock, but not at the reverse shock. This leads to the conclusion that the development of such structures in the shock ramp of quasi-perpendicular collisionless shocks might not necessarily be determined by the existence of a critical sonic Mach number but by a critical shock speed. The results of the investigations done within this dissertation might be useful for further studies of oblique shocks and for studies using hybrid or magnetohydrodynamic simulations. Together with more sophisticated observational methods, these studies will help to bring us closer to an answer as to how particles can be accelerated in supernova remnants and eventually become cosmic rays that can be detected on Earth.}, language = {en} }