@article{SchroenZachariasWomacketal.2018, author = {Schr{\"o}n, Martin and Zacharias, Steffen and Womack, Gary and K{\"o}hli, Markus and Desilets, Darin and Oswald, Sascha and Bumberger, Jan and Mollenhauer, Hannes and K{\"o}gler, Simon and Remmler, Paul and Kasner, Mandy and Denk, Astrid and Dietrich, Peter}, title = {Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an urban environment}, series = {Geoscientific instrumentation, methods and data systems}, volume = {7}, journal = {Geoscientific instrumentation, methods and data systems}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2193-0856}, doi = {10.5194/gi-7-83-2018}, pages = {83 -- 99}, year = {2018}, abstract = {Sensor-to-sensor variability is a source of error common to all geoscientific instruments that needs to be assessed before comparative and applied research can be performed with multiple sensors. Consistency among sensor systems is especially critical when subtle features of the surrounding terrain are to be identified. Cosmic-ray neutron sensors (CRNSs) are a recent technology used to monitor hectometre-scale environmental water storages, for which a rigorous comparison study of numerous co-located sensors has not yet been performed. In this work, nine stationary CRNS probes of type "CRS1000" were installed in relative proximity on a grass patch surrounded by trees, buildings, and sealed areas. While the dynamics of the neutron count rates were found to be similar, offsets of a few percent from the absolute average neutron count rates were found. Technical adjustments of the individual detection parameters brought all instruments into good agreement. Furthermore, we found a critical integration time of 6 h above which all sensors showed consistent dynamics in the data and their RMSE fell below 1\% of gravimetric water content. The residual differences between the nine signals indicated local effects of the complex urban terrain on the scale of several metres. Mobile CRNS measurements and spatial simulations with the URANOS neutron transport code in the surrounding area (25 ha) have revealed substantial sub-footprint heterogeneity to which CRNS detectors are sensitive despite their large averaging volume. The sealed and constantly dry structures in the footprint furthermore damped the dynamics of the CRNS-derived soil moisture. We developed strategies to correct for the sealed-area effect based on theoretical insights about the spatial sensitivity of the sensor. This procedure not only led to reliable soil moisture estimation during dry-out periods, it further revealed a strong signal of intercepted water that emerged over the sealed surfaces during rain events. The presented arrangement offered a unique opportunity to demonstrate the CRNS performance in complex terrain, and the results indicated great potential for further applications in urban climate research.}, language = {en} } @article{SchattanKoehliSchroenetal.2019, author = {Schattan, Paul and K{\"o}hli, Markus and Schr{\"o}n, Martin and Baroni, Gabriele and Oswald, Sascha}, title = {Sensing area-average snow water equivalent with cosmic-ray neutrons: the influence of fractional snow cover}, series = {Water resources research}, volume = {55}, journal = {Water resources research}, number = {12}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2019WR025647}, pages = {10796 -- 10812}, year = {2019}, abstract = {Cosmic-ray neutron sensing (CRNS) is a promising non-invasive technique to estimate snow water equivalent (SWE) over large areas. In contrast to preliminary studies focusing on shallow snow conditions (SWE <130 mm), more recently the method was shown experimentally to be sensitive also to deeper snowpacks providing the basis for its use at mountain experimental sites. However, hysteretic neutron response has been observed for complex snow cover including patchy snow-free areas. In the present study we aimed to understand and support the experimental findings using a comprehensive neutron modeling approach. Several simulations have been set up in order to disentangle the effect on the signal of different land surface characteristics and to reproduce multiple observations during periods of snow melt and accumulation. To represent the actual land surface heterogeneity and the complex snow cover, the model used data from terrestrial laser scanning. The results show that the model was able to accurately reproduce the CRNS signal and particularly the hysteresis effect during accumulation and melting periods. Moreover, the sensor footprint was found to be anisotropic and affected by the spatial distribution of liquid water and snow as well as by the topography of the nearby mountains. Under fully snow-covered conditions the CRNS is able to accurately estimate SWE without prior knowledge about snow density profiles or other spatial anomalies. These results provide new insights into the characteristics of the detected neutron signal in complex terrain and support the use of CRNS for long-term snow monitoring in high elevated mountain environments.}, language = {en} }